Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Artigo | IMSEAR | ID: sea-216035

RESUMO

Antivitamins are compounds that negate the biological effects of vitamins. They have been successfully exploited for the development of various classes of drugs. In the early 19th century, the antifolate prontosil was developed for the treatment of puerperal fever. Since then, numerous other antifolates have been used to treat a wide range of infections. Antifolates, such as methotrexate, are potent anticancer agents and antivitamin K, such as warfarin, are used as anticoagulants. Despite several years of research, most antivitamin-based drugs are limited to vitamin K and B9, and the development of antagonists for other vitamins is still in the nascent stage. In the era of antimicrobial resistance, antivitamins can be considered as a promising alternative to develop newer antimicrobials and are worth exploring further. This review discusses key antivitamins at different stages of development which have potential utility as antibiotic drug candidates. The summary of studies of antivitamins in clinical development is also narrated.

2.
Frontiers of Medicine ; (4): 83-92, 2022.
Artigo em Inglês | WPRIM | ID: wpr-929204

RESUMO

The dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes of Plasmodium vivax, as antifolate resistance-associated genes were used for drug resistance surveillance. A total of 375 P. vivax isolates collected from different geographical locations in China in 2009-2019 were used to sequence Pvdhfr and Pvdhps. The majority of the isolates harbored a mutant type allele for Pvdhfr (94.5%) and Pvdhps (68.2%). The most predominant point mutations were S117T/N (77.7%) in Pvdhfr and A383G (66.8%) in Pvdhps. Amino acid changes were identified at nine residues in Pvdhfr. A quadruple-mutant haplotype at 57, 58, 61, and 117 was the most frequent (57.4%) among 16 distinct Pvdhfr haplotypes. Mutations in Pvdhps were detected at six codons, and the double-mutant A383G/A553G was the most prevalent (39.3%). Pvdhfr exhibited a higher mutation prevalence and greater diversity than Pvdhps in China. Most isolates from Yunnan carried multiple mutant haplotypes, while the majority of samples from temperate regions and Hainan Island harbored the wild type or single mutant type. This study indicated that the antifolate resistance levels of P. vivax parasites were different across China and molecular markers could be used to rapidly monitor drug resistance. Results provided evidence for updating national drug policy and treatment guidelines.


Assuntos
Humanos , Antimaláricos/farmacologia , China/epidemiologia , Combinação de Medicamentos , Resistência a Medicamentos/genética , Antagonistas do Ácido Fólico/farmacologia , Mutação , Plasmodium vivax/genética , Prevalência
3.
Nutrition Research and Practice ; : 95-101, 2020.
Artigo em Inglês | WPRIM | ID: wpr-811395

RESUMO

BACKGROUND/OBJECTIVES: Folate plays a critical role in DNA synthesis and methylation. Intracellular folate homeostasis is maintained by the enzymes folylpolyglutamate synthase (FPGS) and γ-glutamyl hydrolase (GGH). FPGS adds glutamate residues to folate upon its entry into the cell through a process known as polyglutamylation to enhance folate retention in the cell and to maintain a steady supply of utilizable folate derivatives for folate-dependent enzyme reactions. Thereafter, GGH catalyzes the hydrolysis of polyglutamylated folate into monoglutamylated folate, which can subsequently be exported from the cell. The objective of this review is to summarize the scientific evidence available on the effects of intracellular folate homeostasis-associated enzymes on cancer chemotherapy.METHODS: This review discusses the effects of FPGS and GGH on chemosensitivity to cancer chemotherapeutic agents such as antifolates, such as methotrexate, and 5-fluorouracil.RESULTS AND DISCUSSION: Polyglutamylated (anti)folates are better substrates for intracellular folate-dependent enzymes and retained for longer within cells. In addition to polyglutamylation of (anti)folates, FPGS and GGH modulate intracellular folate concentrations, which are an important determinant of chemosensitivity of cancer cells toward chemotherapeutic agents. Therefore, FPGS and GGH affect chemosensitivity to antifolates and 5-fluorouracil by altering intracellular retention status of antifolates and folate cofactors such as 5,10-methylenetetrahydrofolate, subsequently influencing the cytotoxic effects of 5-fluorouracil, respectively. Generally, high FPGS and/or low GGH activity is associated with increased chemosensitivity of cancer cells to methotrexate and 5-fluorouracil, while low FPGS and/or high GGH activity seems to correspond to resistance to these drugs. Further preclinical and clinical studies elucidating the pharmocogenetic ramifications of these enzyme-induced changes are warranted to provide a framework for developing rational, effective, safe, and customized chemotherapeutic practices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA