Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Artigo | IMSEAR | ID: sea-188091

RESUMO

Animal models have been providing invaluable contributions to the better understanding of mechanisms of cancer (including leukaemias) development and effectiveness of most of the treatments. Chemical carcinogens are generally used to study the biology of cancers including leukaemias in many animal models, including rats and mice. The studies in most cases are aimed at the development and evaluation of cancer treatments and preventions. Some of the most common chemical carcinogens used in animal models for leukaemias include N-ethyl-N-nitrosourea (ENU), N-methyl-N-nitrosourea (MNU), dimethyl benz(a)anthracene (DMBA) and benzo(a)pyrene (BaP). This review provides highlights on different animal models of leukaemia induced by the chemical carcinogens mentioned earlier, at the same time discussing the contributions of these models to the leukaemia diagnosis in laboratory animal models for subsequent development of treatment.

2.
Braz. j. microbiol ; 40(4): 884-892, Oct.-Dec. 2009. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-528171

RESUMO

Benzo [a] Pyrene (BaP) is a highly recalcitrant, polycyclic aromatic hydrocarbon (PAH) with high genotoxicity and carcinogenicity. It is formed and released into the environment due to incomplete combustion of fossil fuel and various anthropogenic activities including cigarette smoke and automobile exhausts. The aim of present study is to isolate bacteria which can degrade BaP as a sole source of carbon and energy. We have isolated a novel strain BMT4i (MTCC 9447) of Bacillus subtilis from automobile contaminated soil using BaP (50 ìg /ml) as the sole source of carbon and energy in basal salt mineral (BSM) medium. The growth kinetics of BMT4i was studied using CFU method which revealed that BMT4i is able to survive in BaP-BSM medium up to 40 days attaining its peak growth (10(29) fold increase in cell number) on 7 days of incubation. The BaP degradation kinetics of BMT4i was studied using High Performance Liquid Chromatography (HPLC) analysis of BaP biodegradation products. BMT4i started degrading BaP after 24 hours and continued up to 28 days achieving maximum degradation of approximately 84.66 percent. The above findings inferred that BMT4i is a very efficient degrader of BaP. To our best of knowledge, this is the first report showing utilization of BaP as a sole source of carbon and energy by bacteria. In addition, BMT4i can degrade a wide range of PAHs including naphthalene, anthracene, and dibenzothiophene therefore, it could serve as a better candidate for bioremediation of PAHs contaminated sites.


Assuntos
Bacillus subtilis/isolamento & purificação , Genotoxicidade , Pirenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA