Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Radiological Medicine and Protection ; (12): 321-326, 2021.
Artigo em Chinês | WPRIM | ID: wpr-910315

RESUMO

Objective:To study the effect of emulsifier Tween-80 on radiation-induced bile acid enterohepatic circulation disturbance and the treatment strategy.Methods:Male C57BL/6 J mice were randomly divided into healthy control group, radiation-only group, radiation + Tween-80 group and radiation + Tween-80 + butyric acid group. The mice were exposed to total abdominal irradiation (TAI) using a specific steel lead chamber and γ-ray irradiator was used throughout the experiments. Mice in radiation+ Tween-80 group and radiation+ Tween-80+ butyric acid group were intragastrically administrated with Tween-80 for 7 d before irradiation, while healthy control group and radiation-only group were treated with sterile water. After irradiation, butyric acid was administrated to mice in radiation+ Tween-80+ butyric acid group until euthanasia, while healthy control group, radiation-only group and radiation+ Tween-80 group were treated with sterile water until euthanasia. Small intestine and fecal particles were collected 21 d after irradiation. The concentrations of bile acid in small intestinal and fecal samples were measured using enzyme linked immunosorbent assay (ELISA), the expression of TGR5 and JAM-A, as well as the ratio of IL-10/IL-12 in intestine were detected by quantitative real-time PCR (qRT-PCR). The expression levels of GPR43 in the colon were compared using immunohistochemistry (IHC).Results:Tween-80 pretreated mice exhibited lower concentration of bile acid in small intestine and higher level of bile acid in fecal sample after irradiation (7.92%, 7.99%, t=3.93, 2.94, P<0.05), the expression of TGR5, which mediating the biological function of bile acid, and it′s downstream JAM-A gene were down-regulated (20.93%, 9.91%, t=4.85, 5.14, P<0.05), the ratio of IL-10/IL-12 (indicator related to inhibition of inflammation) (4.59%, t=3.39, P<0.05) as well as the expression of GPR43 protein, a G-protein-coupled receptor for butyric acid, decreased in the colon of Tween-80-pretreated mice compared with the radiation-only group. ELISA assay revealed that butyric acid administration elevated bile acid level in small intestines (8.06%, t=9.25, P<0.05), but reduced that in feces (14.41%, t=4.71, P<0.05). In addition, TGR5 and JAM-A showed higher expression in the intestine of butyric acid-treated mice (19.35%, 32.71%, t=7.69, 19.23, P<0.05), as well as the ratio of IL-10/IL-12 (2.39%, 4.05%, t=3.38, 5.92, P<0.05) and the content of GPR43 protein in colon. Conclusions:Tween-80 deteriorates the disturbance of bile acid enterohepatic circulation induced by ionizing radiation in mice. Butyric acid administration erases the adverse effects of Tween-80.

2.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 572-579, 2018.
Artigo em Inglês | WPRIM | ID: wpr-773584

RESUMO

Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. As a metabolic regulator, FXR plays key roles in bile acid and cholesterol metabolism and lipid and glucose homeostasis. Therefore, FXR is a potential drug target for several metabolic syndromes, especially those related to lipidemia disorders. In the present study, we identified small molecule SIPI-7623, a derivative of an extract from Oriental wormwood (Artemisia capillaris), and found that it specifically upregulated the expression of cholesterol-7-alpha-hydroxylase (CYP7A1), downregulated the expression of sterol-regulatory element-binding protein 1c (SREBP-1c) in the liver, and inhibited the expression of ileal bile acid binding-protein (IBABP) in the ileum of rats. We found that inhibition of FXR by SIPI-7623 decreased the level of cholesterol and triglyceride. SIPI-7623 reduced the levels of cholesterol and triglyceride in in vitro HepG2 cell models, ameliorated diet-induced atherosclerosis, and decreased the serum lipid content on rats and rabbits model of atherosclerosis in vivo. Furthermore, SIPI-7623 decreased the extent of atherosclerotic lesions. Our resutls demonstrated that antagonism of the FXR pathway can be employed as a therapeutic strategy to treat metabolic diseases such as hyperlipidemia and atherosclerosis. In conclusion, SIPI-7623 could be a promising lead compound for development of drugs to treat hyperlipidemia and atherosclerosis.


Assuntos
Animais , Humanos , Masculino , Coelhos , Ratos , Artemisia , Química , Aterosclerose , Tratamento Farmacológico , Genética , Metabolismo , Colesterol , Metabolismo , Colesterol 7-alfa-Hidroxilase , Genética , Metabolismo , Medicamentos de Ervas Chinesas , Hiperlipidemias , Tratamento Farmacológico , Genética , Metabolismo , Hipolipemiantes , Fígado , Metabolismo , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares , Genética , Metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1 , Genética , Metabolismo , Triglicerídeos , Metabolismo
3.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 572-579, 2018.
Artigo em Inglês | WPRIM | ID: wpr-812373

RESUMO

Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. As a metabolic regulator, FXR plays key roles in bile acid and cholesterol metabolism and lipid and glucose homeostasis. Therefore, FXR is a potential drug target for several metabolic syndromes, especially those related to lipidemia disorders. In the present study, we identified small molecule SIPI-7623, a derivative of an extract from Oriental wormwood (Artemisia capillaris), and found that it specifically upregulated the expression of cholesterol-7-alpha-hydroxylase (CYP7A1), downregulated the expression of sterol-regulatory element-binding protein 1c (SREBP-1c) in the liver, and inhibited the expression of ileal bile acid binding-protein (IBABP) in the ileum of rats. We found that inhibition of FXR by SIPI-7623 decreased the level of cholesterol and triglyceride. SIPI-7623 reduced the levels of cholesterol and triglyceride in in vitro HepG2 cell models, ameliorated diet-induced atherosclerosis, and decreased the serum lipid content on rats and rabbits model of atherosclerosis in vivo. Furthermore, SIPI-7623 decreased the extent of atherosclerotic lesions. Our resutls demonstrated that antagonism of the FXR pathway can be employed as a therapeutic strategy to treat metabolic diseases such as hyperlipidemia and atherosclerosis. In conclusion, SIPI-7623 could be a promising lead compound for development of drugs to treat hyperlipidemia and atherosclerosis.


Assuntos
Animais , Humanos , Masculino , Coelhos , Ratos , Artemisia , Química , Aterosclerose , Tratamento Farmacológico , Genética , Metabolismo , Colesterol , Metabolismo , Colesterol 7-alfa-Hidroxilase , Genética , Metabolismo , Medicamentos de Ervas Chinesas , Hiperlipidemias , Tratamento Farmacológico , Genética , Metabolismo , Hipolipemiantes , Fígado , Metabolismo , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares , Genética , Metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1 , Genética , Metabolismo , Triglicerídeos , Metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA