Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Neuroscience Bulletin ; (6): 1625-1636, 2021.
Artigo em Chinês | WPRIM | ID: wpr-951939

RESUMO

The capacity for neurogenesis in the adult mammalian brain is extremely limited and highly restricted to a few regions, which greatly hampers neuronal regeneration and functional restoration after neuronal loss caused by injury or disease. Meanwhile, transplantation of exogenous neuronal stem cells into the brain encounters several serious issues including immune rejection and the risk of tumorigenesis. Recent discoveries of direct reprogramming of endogenous glial cells into functional neurons have provided new opportunities for adult neuro-regeneration. Here, we extensively review the experimental findings of the direct conversion of glial cells to neurons in vitro and in vivo and discuss the remaining issues and challenges related to the glial subtypes and the specificity and efficiency of direct cell-reprograming, as well as the influence of the microenvironment. Although in situ glial cell reprogramming offers great potential for neuronal repair in the injured or diseased brain, it still needs a large amount of research to pave the way to therapeutic application.

2.
Neuroscience Bulletin ; (6): 1625-1636, 2021.
Artigo em Inglês | WPRIM | ID: wpr-922646

RESUMO

The capacity for neurogenesis in the adult mammalian brain is extremely limited and highly restricted to a few regions, which greatly hampers neuronal regeneration and functional restoration after neuronal loss caused by injury or disease. Meanwhile, transplantation of exogenous neuronal stem cells into the brain encounters several serious issues including immune rejection and the risk of tumorigenesis. Recent discoveries of direct reprogramming of endogenous glial cells into functional neurons have provided new opportunities for adult neuro-regeneration. Here, we extensively review the experimental findings of the direct conversion of glial cells to neurons in vitro and in vivo and discuss the remaining issues and challenges related to the glial subtypes and the specificity and efficiency of direct cell-reprograming, as well as the influence of the microenvironment. Although in situ glial cell reprogramming offers great potential for neuronal repair in the injured or diseased brain, it still needs a large amount of research to pave the way to therapeutic application.


Assuntos
Animais , Reprogramação Celular , Regeneração Nervosa , Neurogênese , Neuroglia , Neurônios
3.
Journal of Stroke ; : 267-272, 2016.
Artigo em Inglês | WPRIM | ID: wpr-193777

RESUMO

Stroke activates neural stem cells in the ventricular-subventricular zone (V/SVZ) of the lateral ventricle, which increases neuroblasts and oligodendrocyte progenitor cells (OPCs). Within the ischemic brain, neural stem cells, neuroblasts and OPCs appear to actively communicate with cerebral endothelial cells and other brain parenchymal cells to mediate ischemic brain repair; however, stroke-induced neurogenesis unlikely plays any significant roles in neuronal replacement. In this mini-review, we will discuss recent findings how intercellular communications between stroke-induced neurogenesis and oligodendrogenesis and brain parenchymal cells could potentially facilitate brain repair processes.


Assuntos
Encéfalo , Células Endoteliais , Ventrículos Laterais , Células-Tronco Neurais , Neurogênese , Neurônios , Oligodendroglia , Células-Tronco , Acidente Vascular Cerebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA