Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Asian Pacific Journal of Tropical Medicine ; (12): 386-389, 2014.
Artigo em Inglês | WPRIM | ID: wpr-819665

RESUMO

OBJECTIVE@#To investigate the effect of acute renal ischemia reperfusion on brain tissue.@*METHODS@#Fourty eight rats were randomly divided into four groups (n=12): sham operation group, 30 min ischemia 60 min reperfusion group, 60 min ischemia 60 min reperfusion group, and 120 min ischemia 60 min reperfusion group. The brain tissues were taken after the experiment. TUNEL assay was used to detect the brain cell apoptosis, and western blot was used to detect the expression of apoptosis-related proteins and inflammatory factors.@*RESULTS@#Renal ischemia-reperfusion induced apoptosis of brain tissues, and the apoptosis increased with prolongation of ischemia time. The detection at the molecular level showed decreased Bcl-2 expression, increased Bax expression, upregulated expression of NF-κB and its downstream factor COX-2/PGE2.@*CONCLUSIONS@#Acute renal ischemia-reperfusion can cause brain tissue damage, manifested as induced brain tissues apoptosis and inflammation activation.


Assuntos
Animais , Masculino , Ratos , Injúria Renal Aguda , Metabolismo , Proteínas Reguladoras de Apoptose , Metabolismo , Encéfalo , Biologia Celular , Metabolismo , Química Encefálica , Citocinas , Metabolismo , NF-kappa B , Metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Metabolismo
2.
The Korean Journal of Physiology and Pharmacology ; : 65-71, 2008.
Artigo em Inglês | WPRIM | ID: wpr-728606

RESUMO

The present study examined the inhibitory effect of licorice compounds glycyrrhizin and a metabolite 18 beta-lycyrrhetinic acid on the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse and on the 1-methyl-4-phenylpyridinium (MPP+-induced cell death in differentiated PC12 cells. MPTP treatment increased the activities of total superoxide dismutase, catalase and glutathione peroxidase and the levels of malondialdehyde and carbonyls in the brain compared to control mouse brain. Co-administration of glycyrrhizin (16.8 mg/kg) attenuated the MPTP effect on the enzyme activities and formation of tissue peroxidation products. In vitro assay, licorice compounds attenuated the MPP+induced cell death and caspase-3 activation in PC12 cells. Glycyrrhizin up to 100 micrometer significantly attenuated the toxicity of MPP+ Meanwhile, 18beta-lycyrrhetinic acid showed a maximum inhibitory effect at 10 micrometer; beyond this concentration the inhibitory effect declined. Glycyrrhizin and 18beta-lycyrrhetinic acid attenuated the hydrogen peroxide- or nitrogen species-induced cell death. Results from this study indicate that glycyrrhizin may attenuate brain tissue damage in mice treated with MPTP through inhibitory effect on oxidative tissue damage. Glycyrrhizin and 18 beta-lycyrrhetinic acid may reduce the MPP+toxicity in PC12 cells by suppressing caspase-3 activation. The effect seems to be ascribed to the antioxidant effect.


Assuntos
Animais , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , 1-Metil-4-fenilpiridínio , Antioxidantes , Encéfalo , Caspase 3 , Catalase , Morte Celular , Glutationa Peroxidase , Glycyrrhiza , Ácido Glicirrízico , Hidrogênio , Malondialdeído , Nitrogênio , Células PC12 , Superóxido Dismutase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA