Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 371-382, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982708

RESUMO

This study aimed to investigate the effect and mechanisms of Ephedra Herb (EH) extract on adriamycin-induced nephrotic syndrome (NS), providing an experimental basis for the clinical treatment of NS. Hematoxylin and eosin staining, creatinine, urea nitrogen, and kidn injury molecule-1 were used to evaluate the activities of EH extract on renal function. The levels of inflammatory factors and oxidative stress were detected by kits. The levels of reactive oxygen species, immune cells, and apoptosis were measured by flow cytometry. A network pharmacological approach was used to predict the potential targets and mechanisms of EH extract in the treatment of NS. The protein levels of apoptosis-related proteins and CAMKK2, p-CAMKK2, AMPK, p-AMPK, mTOR and p-mTOR in the kidneys were detected by Western blot. The effective material basis of EH extract was screened by MTT assay. The AMPK pathway inhibitor (compound C, CC) was added to investigate the effect of the potent material basis on adriamycin-induced cell injury. EH extract significantly improved renal injury and relieve inflammation, oxidative stress, and apoptosis in rats. Network pharmacology and Western blot results showed that the effect of EH extract on NS may be associated with the CAMKK2/AMPK/mTOR signaling pathway. Moreover, methylephedrine significantly ameliorated adriamycin-induced NRK-52e cell injury. Methylephedrine also significantly improved the phosphorylation of AMPK and mTOR, which were blocked by CC. In sum, EH extract may ameliorate renal injury via the CAMKK2/AMPK/mTOR signaling pathway. Moreover, methylephedrine may be one of the material bases of EH extract.


Assuntos
Ratos , Animais , Doxorrubicina/efeitos adversos , Síndrome Nefrótica , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apoptose
2.
China Journal of Chinese Materia Medica ; (24): 193-201, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970514

RESUMO

Alcoholic liver disease(ALD), with its increasing morbidity and mortality, has seriously and extensively affected the health of people worldwide. Methyl ferulic acid(MFA) has been proven to significantly inhibit alcohol-induced lipid production in L02 cells through the AMP-activated protein kinase(AMPK) pathway, but its in-depth mechanism remains unclear. This study aimed to further clarify the mechanism of MFA in improving lipid accumulation in L02 cells through the microRNA-378b(miR-378b)-mediated calcium/calmodulin-dependent protein kinase kinase 2(CaMKK2)-AMPK signaling pathway based on existing researches. L02 cells were induced by 100 mmol·L~(-1) ethanol for 48 h to establish the model of ALD in vitro, and 100, 50, and 25 μmol·L~(-1) concentration of MFA was treated. MiR-378b plasmids(containing the overexpression plasmid-miR-378b mimics, silence plasmid-miR-378b inhibitor, and their respective negative control-miR-378b NCs) were transfected into L02 cells by electroporation to up-regulate or down-regulate the levels of miR-378b in L02 cells. The levels of total cholesterol(TC) and triglyceride(TG) in cells were detected by commercial diagnostic kits and automatic biochemical analyzers. The expression levels of miR-378b in L02 cells were detected by real-time quantitative polymerase chain reaction(qRT-PCR). CaMKK2 mRNA levels were detected by PCR, and protein expressions of related factors involved in lipid synthesis, decomposition, and transport in lipid metabolism were detected by Western blot. The results displayed that ethanol significantly increased TG and TC levels in L02 cells, while MFA decreased TG and TC levels. Ethanol up-regulated the miR-378b level, while MFA effectively inhibited the miR-378b level. The overexpression of miR-378b led to lipid accumulation in ethanol-induced L02 cells, while the silence of miR-378b improved the lipid deposition induced by ethanol. MFA activated the CaMKK2-AMPK signaling pathway by lowering miR-378b, thus improving lipid synthesis, decomposition, and transport, which improved lipid deposition in L02 cells. This study shows that MFA improves lipid deposition in L02 cells by regulating the CaMKK2-AMPK pathway through miR-378b.


Assuntos
Humanos , Etanol/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Fígado Gorduroso , Triglicerídeos , MicroRNAs/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética
3.
Chinese Journal of Pathophysiology ; (12): 475-480, 2017.
Artigo em Chinês | WPRIM | ID: wpr-510687

RESUMO

AIM:To investigate the effect of liraglutide ( LG) on the expression of fibronectin type Ⅲdomain-containing protein 5 (FNDC5) in the C2C12 myotubes.METHODS:The C2C12 mouse myoblast cell line was induced to differentiation.Differentiated cells were stimulated with gradient concentrations (1 ~1000 nmol/L) of LG for different time (0 ~24 h).The effects of LG on the expression of FNDC5 and the activation of adenosine 5'-monophosphate ( AMP)-activated protein kinase ( AMPK) signaling pathway were determined .After pretreated with glucagon-like peptide-1 ( GLP-1 ) receptor antagonist exendin 9-39 , the inhibitor of Ca 2+/calmodulin-dependent protein kinase kinase 2 (CAMKK2), STO609, or the inhibitor of AMPK, Compound C, the LG-induced FNDC5 expression in C2C12 myotubes was examined.The expression of FNDC5 and the activation of AMPK were determined by Western blot .RESULTS: In C2C12 myotubes, LG promoted the expression of FNDC5 in a dose-and time-dependent manner .LG also activated AMPK signaling pathway .These effects of LG were partly abolished by exendin 9-39 , STO609 and Compound C .CONCLUSION:LG promotes the expression of FNDC5 via GLP-1 receptor in the C2C12 myotubes possibly through activation of the CAMKK2/AMPK signaling pathways .

4.
Chinese Pharmacological Bulletin ; (12): 1383-1387,1388, 2015.
Artigo em Chinês | WPRIM | ID: wpr-602400

RESUMO

Aim To investigate the effect of osthole on neuron synapses infected APP gene and its underlying mechanism. Methods The neurons were divided into three groups:GFP, APP, APP+Ost groups. The neu-rons were infected APP gene with containing mutational site in vitro for mimicking the characterstics of Alzhei-mer’ s disease ( AD) . The cell viability was assessed by CCK-8 , the expression of synapsin-1 was deter-mined by immunofluorescence, and the concentration of PSD-95 and SYP were detected by ELISA. The ex-pressions of Aβ1-42 , CAMKK2 , phoshorylated AMPKα1 , AMPKα1 protein were determined by West-ern blot. Results Strong APP staining was visible in neurons infected with APP and abundant expression of Aβ1-42 , a neurotoxic oligomer. Compared with APP group, APP+Ost group significantly increased cell vi-ability, promoted the expression of synapsin-1, up-reg-ulated the concentration of PSD-95 and SYP, and de-creased the expressions of CAMKK2 and p-AMPKα1 . Conclusions Ost can protect the neuron synapses a-gainst infected with APP gene. Its neuroprotective effect may be related to inhibiting the CAMKK2/AMPK signal pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA