Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Integrative Medicine ; (12): 474-486, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1010952

RESUMO

OBJECTIVE@#Jiedu Recipe (JR), a Chinese herbal remedy, has been shown to prolong overall survival time and decrease recurrence and metastasis rates in patients with hepatocellular carcinoma (HCC). This work investigated the mechanism of JR in HCC treatment.@*METHODS@#The chemical constituents of JR were detected using liquid chromatography-mass spectrometry. The potential anti-HCC mechanism of JR was screened using network pharmacology and messenger ribonucleic acid (mRNA) microarray chip assay, followed by experimental validation in human HCC cells (SMMC-7721 and Huh7) in vitro and a nude mouse subcutaneous transplantation model of HCC in vivo. HCC cell characteristics of proliferation, migration and invasion under hypoxic setting were investigated using thiazolyl blue tetrazolium bromide, wound healing and Transwell assays, respectively. Image-iT™ Hypoxia Reagent was added to reveal hypoxic conditions. Stem cell sphere formation assay was used to detect the stemness. Epithelial-mesenchymal transition (EMT) markers like E-cadherin, vimentin and α-smooth muscle actin, and pluripotent transcription factors including nanog homeobox, octamer-binding transcription factor 4, and sex-determining region Y box protein 2 were analyzed using Western blotting and real-time polymerase chain reaction. Western blot was performed to ascertain the anti-HCC effect of JR under hypoxia involving the Wnt/β-catenin pathway.@*RESULTS@#According to network pharmacology and mRNA microarray chip analysis, JR may potentially act on hypoxia and inhibit the Wnt/β-catenin pathway. In vitro and in vivo experiments showed that JR significantly decreased hypoxia, and suppressed HCC cell features of proliferation, migration and invasion; furthermore, the hypoxia-induced increases in EMT and stemness marker expression in HCC cells were inhibited by JR. Results based on the co-administration of JR and an agonist (LiCl) or inhibitor (IWR-1-endo) verified that JR suppressed HCC cancer stem-like properties under hypoxia by blocking the Wnt/β-catenin pathway.@*CONCLUSION@#JR exerts potent anti-HCC effects by inhibiting cancer stemness via abating the Wnt/β-catenin pathway under hypoxic conditions. Please cite this article as: Guo BJ, Ruan Y, Wang YJ, Xiao CL, Zhong ZP, Cheng BB, Du J, Li B, Gu W, Yin ZF. Jiedu Recipe, a compound Chinese herbal medicine, inhibits cancer stemness in hepatocellular carcinoma via Wnt/β-catenin pathway under hypoxia. J Integr Med. 2023; 21(5): 474-486.


Assuntos
Animais , Camundongos , Humanos , Carcinoma Hepatocelular/genética , beta Catenina/farmacologia , Neoplasias Hepáticas/genética , Medicamentos de Ervas Chinesas/uso terapêutico , RNA Mensageiro/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Movimento Celular , Regulação Neoplásica da Expressão Gênica
2.
Journal of Integrative Medicine ; (12): 184-193, 2023.
Artigo em Inglês | WPRIM | ID: wpr-971653

RESUMO

OBJECTIVE@#Physical exercise, a common non-drug intervention, is an important strategy in cancer treatment, including hepatocellular carcinoma (HCC). However, the mechanism remains largely unknown. Due to the importance of hypoxia and cancer stemness in the development of HCC, the present study investigated whether the anti-HCC effect of physical exercise is related to its suppression on hypoxia and cancer stemness.@*METHODS@#A physical exercise intervention of swimming (30 min/d, 5 d/week, for 4 weeks) was administered to BALB/c nude mice bearing subcutaneous human HCC tumor. The anti-HCC effect of swimming was assessed in vivo by tumor weight monitoring, hematoxylin and eosin (HE) staining, and immunohistochemistry (IHC) detection of proliferating cell nuclear antigen (PCNA) and Ki67. The expression of stemness transcription factors, including Nanog homeobox (NANOG), octamer-binding transcription factor 4 (OCT-4), v-Myc avian myelocytomatosis viral oncogene homolog (C-MYC) and hypoxia-inducible factor-1α (HIF-1α), was detected using real-time reverse transcription polymerase chain reaction. A hypoxia probe was used to explore the intratumoral hypoxia status. Western blot was used to detect the expression of HIF-1α and proteins related to protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling pathway. The IHC analysis of platelet endothelial cell adhesion molecule-1 (CD31), and the immunofluorescence co-location of CD31 and desmin were used to analyze tumor blood perfusion. SMMC-7721 cells were treated with nude mice serum. The inhibition effect on cancer stemness in vitro was detected using suspension sphere experiments and the expression of stemness transcription factors. The hypoxia status was inferred by measuring the protein and mRNA levels of HIF-1α. Further, the expression of proteins related to Akt/GSK-3β/β-catenin signaling pathway was detected.@*RESULTS@#Swimming significantly reduced the body weight and tumor weight in nude mice bearing HCC tumor. HE staining and IHC results showed a lower necrotic area ratio as well as fewer PCNA or Ki67 positive cells in mice receiving the swimming intervention. Swimming potently alleviated the intratumoral hypoxia, attenuated the cancer stemness, and inhibited the Akt/GSK-3β/β-catenin signaling pathway. Additionally, the desmin+/CD31+ ratio, rather than the number of CD31+ vessels, was significantly increased in swimming-treated mice. In vitro experiments showed that treating cells with the serum from the swimming intervention mice significantly reduced the formation of SMMC-7721 cell suspension sphere, as well as the mRNA expression level of stemness transcription factors. Consistent with the in vivo results, HIF-1α and Akt/GSK-3β/β-catenin signaling pathway were also inhibited in cells treated with serum from swimming group.@*CONCLUSION@#Swimming alleviated hypoxia and attenuated cancer stemness in HCC, through suppression of the Akt/GSK-3β/β-catenin signaling pathway. The alleviation of intratumoral hypoxia was related to the increase in blood perfusion in the tumor. Please cite this article as: Xiao CL, Zhong ZP, Lü C, Guo BJ, Chen JJ, Zhao T, Yin ZF, Li B. Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3β/β-catenin pathway. J Integr Med. 2023; 21(2): 184-193.


Assuntos
Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antígeno Nuclear de Célula em Proliferação/uso terapêutico , Camundongos Nus , Glicogênio Sintase Quinase 3 beta/genética , beta Catenina/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Desmina/uso terapêutico , Antígeno Ki-67 , Linhagem Celular Tumoral , Hipóxia , RNA Mensageiro/uso terapêutico , Proliferação de Células
3.
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery ; (12): 614-621, 2023.
Artigo em Chinês | WPRIM | ID: wpr-996471

RESUMO

@#Objective    To study the effect of Tangeretin on non-small cell lung cancer (NSCLC) and the tumor stemness, and to find the molecular mechanism of its effect. Methods    We used cell counting and cell cloning experiments to study the effect of Tangeretin on the proliferation of NSCLC cells in vitro. The effect of Tangeretin on the invasion of NSCLC cells was detected by transwell assay. We detected the effect of Tangeretin on the proliferation of NSCLC cells in vivo by nude mouse tumor-bearing experiment. The effect of Tangeretin on tumor stemness of NSCLC cells was detected by self-renew assay, and CD133 and Nanog protein expressions. The expressions of PI3K/AKT/mTOR signaling pathway-related proteins were detected by Western blotting (WB). Results    Tangeretin had a good inhibitory effect on the proliferation of NSCLC cells in vivo and in vitro. Cell counting experiment, clonal formation experiment and nude mouse tumor-bearing experiment showed that Tangeretin could inhibit the proliferation activity, clonal formation ability, and tumor size of NSCLC cells in vivo. Self-renew experiments showed that Tangeretin could inhibit the self-renew ability of NSCLC cells. WB experiments showed that Tangeretin inhibited the expressions of tumor stemness markers CD133 and Nanog in NSCLC cells. Tangeretin could inhibit the activation of PI3K/AKT/mTOR signaling pathway-related proteins in NSCLC cells, and the activation of PI3K/AKT/mTOR signaling pathway could partially remit the inhibitory  effect of Tangeretin on tumor stemness of NSCLC cells. Conclusion    Tangeretin can inhibit the tumor stemness of NSCLC cells, which may be related to the regulation of PI3K/AKT/mTOR signaling pathway.

4.
Chinese journal of integrative medicine ; (12): 914-923, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1010299

RESUMO

OBJECTIVE@#To investigate the molecular mechanisms underlying the effect of baicalin on prostate cancer (PCa) progression both in vivo and in vitro.@*METHODS@#The in situ PCa stem cells (PCSCs)-injected xenograft tumor models were established in BALB/c nude mice. Tumor volume and weight were respectively checked after baicalin (100 mg/kg) treatment. Hematoxylin-eosin (HE) staining was used to observe the growth arrest and cell necrosis. mRNA expression levels of acetaldehyde dehydrogenase 1 (ALDH1), CD44, CD133 and Notch1 were determined by reverse transcription-polymerase chain reaction. Protein expression levels of ALDH1, CD44, CD133, Notch1, nuclear factor κB (NF-κB) P65 and NF-κB p-P65 were detected by Western blot. Expression and subcellular location of ALDH1, CD44, CD133, Notch1 and NF-κB p65 were detected by immunofluorescence analysis. In vitro, cell cycle distribution and cell apoptosis of PC3 PCSCs was assessed by flow cytometry after baicalin (125 µmol/L) treatment. The migration and invasion abilities of PCSCs were assessed using Transwell assays. Transmission electron microscopy scanning was utilized to observe the structure and autophagosome formation of baicalin-treated PCSCs. In addition, PCSCs were infected with lentiviruses expressing human Notch1.@*RESULTS@#Compared with the control group, the tumor volume and weight were notably reduced in mice treated with 100 mg/kg baicalin (P<0.05 or P<0.01). Histopathological analysis showed that baicalin treatment significantly inhibited cell proliferation and promoted cell apoptosis. Furthermore, baicalin treatment reduced mRNA and protein expression levels of CD44, CD133, ALDH1, and Notch1 as well as the protein expression of NF-κB p-P65 in the xenograft tumor (P<0.01). In vitro, the cell proliferation of PCSCs was significantly attenuated after treatment with 125 µmol/L baicalin for 72 h (P<0.01). The cell migration and invasion rates were decreased following treatment with baicalin for 48 and 72 h (P<0.01). Baicalin notably induced cell apoptosis and seriously damaged the structure of PCSCs. The mRNA and protein expressions of CD133, CD44, ALDH1 and Notch1 in PCSCs were significantly downregulated following baicalin treatment (P<0.01). Importantly, the inhibitory effects of baicalin on PCa progression and stemness were reversed by Notch1 overexpression (P<0.05 or P<0.01).@*CONCLUSION@#Mechanistically, baicalin exhibited a potential therapeutic effect on PCa via inhibiting the Notch1/NF-κB signaling pathway and its mediated cancer stemness.


Assuntos
Masculino , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Transdução de Sinais , Neoplasias da Próstata/tratamento farmacológico , RNA Mensageiro
5.
Chinese Journal of Cancer Biotherapy ; (6): 1328-1335, 2020.
Artigo em Chinês | WPRIM | ID: wpr-862239

RESUMO

@#[Abstract] Objective: To explore the role of miR-9-5p in the biological behaviors of breast cancer cells and its possible regulatory mechanism. Methods: online OncomiR database was used to analyze the differential expression of miR-9-5p in breast cancer tissues and normal breast tissues. qPCR was used to detect the miR-9-5p expression in breast cancer cell lines and normal breast cells. Based on target gene prediction software TargetScan, ONECUT2 (one cut homeobox 2) was predicted to be the target gene of miR-9-5p. Dual luciferase reporter system was used to validate the relationship between miR-9-5p and its promising target gene ONECUT2. MDA-231 cells were transfected with miR-9-5p mimic, ONECUT2 siRNAs as well as the corresponding control sequences. The protein and mRNA levels of stemness-associated gene NOTCH1, NANOG and SOX9 (SRY (sex-determing region of Y chromosome) -Box transcription Factor 9) were detected by WB and qPCR. The effect of transfection on proliferation, apoptosis and chemo-resistance of cells was detected by BrdU method, Annexin Ⅴ method and MTS Assay, respectively. The ALDEFLUOR experiment was used to detect the effects of miR-9-5p and its target gene ONECUT2 on tumor stemness. NSG mouse breast cancer chemotherapy model was established, and the in vivo experiments further verified the effect of ONECUT2 on tumor malignant biological behaviors, such as cell stemness and chemo-resistance. Results: miR-9-5p was highly expressed in breast cancer tissues (P=0.007) and breast cancer MDA-231 cell line (P=0.0005), and was positively correlated with the poor prognosis of breast cancer patients (P=0.0016). Compared to control group, miR-9-5p could target and negatively regulate ONECUT2 expression, further increase ALDH+ cell population (P=0.0006), as well as increase the expressions of stemness-associated genes NOTCH1, NANOG and SOX9. Besides, miR-9-5p increased the anti-apoptosis ability (P=0.0003) and chemo-resistance of MDA-231 cells; however, miR-9-5p/ONECUT2 exerted no significant effect on the proliferation ability of MDA-231 cells (P>0.05). Compared with the control group, the volume of xenografts in mice of MDA-231/ONECUT2 group after DTX chemotherapy was significantly lower than that in the control group (P<0.05), and the protein expressions of NOTCH1, SOX9 and the mRNA expression of ABC transporter in the transplanted tumor tissues were significantly reduced (P<0.05 or P<0.01). Conclusions: The highly expressed miR-9-5p in breast cancer induces tumor stemness and anti-apoptotic ability by targeting ONECUT2 and enhances its resistance to chemotherapy.

6.
The Korean Journal of Internal Medicine ; : 589-599, 2017.
Artigo em Inglês | WPRIM | ID: wpr-220159

RESUMO

A hypoxic microenvironment leads to cancer progression and increases the metastatic potential of cancer cells within tumors via epithelial-mesenchymal transition (EMT) and cancer stemness acquisition. The hypoxic response pathway can occur under oxygen tensions of < 40 mmHg through hypoxia-inducible factors (HIFs), which are considered key mediators in the adaptation to hypoxia. Previous studies have shown that cellular responses to hypoxia are required for EMT and cancer stemness maintenance through HIF-1α and HIF-2α. The principal transcription factors of EMT include Twist, Snail, Slug, Sip1 (Smad interacting protein 1), and ZEB1 (zinc finger E-box-binding homeobox 1). HIFs bind to hypoxia response elements within the promoter region of these genes and also target cancer stem cell-associated genes and mediate transcriptional responses to hypoxia during stem cell differentiation. Acquisition of stemness characteristics in epithelial cells can be induced by activation of the EMT process. The mechanism of these phenotypic changes includes epigenetic alterations, such as DNA methylation, histone modification, chromatin remodeling, and microRNAs. Increased expression of EMT and pluripotent genes also play a role through demethylation of their promoters. In this review, we summarize the role of hypoxia on the acquisition of EMT and cancer stemness and the possible association with epigenetic regulation, as well as their therapeutic applications.


Assuntos
Hipóxia , Montagem e Desmontagem da Cromatina , Metilação de DNA , Epigenômica , Células Epiteliais , Transição Epitelial-Mesenquimal , Dedos , Gastrópodes , Genes Homeobox , Histonas , MicroRNAs , Oxigênio , Regiões Promotoras Genéticas , Elementos de Resposta , Caramujos , Células-Tronco , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA