Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
International Journal of Oral Biology ; : 61-68, 2018.
Artigo em Coreano | WPRIM | ID: wpr-740070

RESUMO

Codium fragile (Suringar) Hariot is an edible green seaweed that belong to the Codiaceae family and has been used in Oriental medicine for the treatment of enterobiasis, dropsy, and dysuria. Methanol extract of codium fragile has anti-oxidant, anti-inflammatory and anti-cancer properties, although the anti-cancer effect on oral cancer has not yet been reported. In this study, we investigated the anti-cancer activity and the mechanism of cell death by methanol extracts of Codium fragile (MeCF) on human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that MeCF inhibits cell viability in a dose-dependent manner, and markedly induced apoptosis, as determined by the MTT assay, Live/Dead assay, and DAPI stain. In addition, MeCF induced the proteolytic cleavage of procaspase −3, −7, −9 and poly(ADP-ribose) polymerase(PARP), and upregulated or downregulated the expression of mitochondrial-apoptosis factor, Bax(pro-apoptotic factor), and Bcl-2(anti-apoptotic factor), . Futhermore, MeCF induced a cell cycle arrest at the G1/S phase through suppressing the expression of the cell cycle cascade proteins, p21, CDK4, CyclinD1, and phospho-Rb. Taken together, these results indicated that MeCF inhibits cell growth, and this inhibition is mediated by caspase- and mitochondrial-dependent apoptotic pathways through cell cycle arrest at the G1/S phase in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, methanol extracts of Codium fragile can be provided as a novel chemotherapeutic drug due to its growth inhibition effects and induction of apoptosis in human oral cancer cells.


Assuntos
Humanos , Apoptose , Carcinoma de Células Escamosas , Pontos de Checagem do Ciclo Celular , Ciclo Celular , Morte Celular , Sobrevivência Celular , Disuria , Edema , Enterobíase , Hipofaringe , Medicina Tradicional do Leste Asiático , Metanol , Neoplasias Bucais , Poli Adenosina Difosfato Ribose , Alga Marinha
2.
Asian Pacific Journal of Tropical Medicine ; (12): 535-541, 2016.
Artigo em Inglês | WPRIM | ID: wpr-820230

RESUMO

OBJECTIVE@#To evaluate whether the methanol extract of Codium fragile (MECF) regulates tumor necrosis factor-α (TNF-α)-induced invasion of human breast cancer MDA-MB-231 cells by suppressing matrix metalloproteinase-9 (MMP-9).@*METHODS@#Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis were performed to analyze the expression of MMP-9 and nuclear factor-κB (NF-κB) subunits, p65 and p50, and IκB in MDA-MB-231 cells. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used for cell viability. MMP-9 activity and invasion were measured by gelatin zymography and a matrigel invasion assay, respectively. NF-κB activity was measured by an electrophoretic mobility shift assay and luciferase activity.@*RESULTS@#MECF had no effect on cell viability up to a concentration of 100 μg/mL in human breast cancer MDA-MB-231 cells regardless of the presence of TNF-α. MDA-MB-231 cells that were stimulated with TNF-α showed a marked increase of invasion compared to the untreated control, whereas pretreatment with MECF downregulated the TNF-α-induced invasion of MDA-MB-231 cells. Additionally, zymography, western blot analysis, and RT-PCR confirmed that MECF decreased TNF-α-induced MMP-9 expression and activity which is a key regulator for cancer invasion. According to an electrophoretic morbidity shift assay, pretreatment with MECF in MDA-MB-231 cells significantly decreased the TNF-α-induced DNA-binding activity of NF-κB, which is an important transcription factor for regulating cancer invasion-related genes such as MMP-9. Furthermore, treatment with MECF sustained the expression of p65 and p50 in response to TNF-α in the cytosolic compartment. The luciferase assay demonstrated that MECF attenuated TNF-α-induced NF-κB luciferase activity.@*CONCLUSION@#MECF exhibited its anti-invasive capability by downregulating TNF-α-induced MMP-9 expression, resulting from the suppression of NF-κB activity in the human breast cancer cell line MDA-MB-231.

3.
Asian Pacific Journal of Tropical Medicine ; (12): 535-541, 2016.
Artigo em Chinês | WPRIM | ID: wpr-951397

RESUMO

Objective To evaluate whether the methanol extract of Codium fragile (MECF) regulates tumor necrosis factor-α (TNF-α)-induced invasion of human breast cancer MDA-MB-231 cells by suppressing matrix metalloproteinase-9 (MMP-9). Methods Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis were performed to analyze the expression of MMP-9 and nuclear factor-κB (NF-κB) subunits, p65 and p50, and IκB in MDA-MB-231 cells. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used for cell viability. MMP-9 activity and invasion were measured by gelatin zymography and a matrigel invasion assay, respectively. NF-κB activity was measured by an electrophoretic mobility shift assay and luciferase activity. Results MECF had no effect on cell viability up to a concentration of 100 μg/mL in human breast cancer MDA-MB-231 cells regardless of the presence of TNF-α. MDA-MB-231 cells that were stimulated with TNF-α showed a marked increase of invasion compared to the untreated control, whereas pretreatment with MECF downregulated the TNF-α-induced invasion of MDA-MB-231 cells. Additionally, zymography, western blot analysis, and RT-PCR confirmed that MECF decreased TNF-α-induced MMP-9 expression and activity which is a key regulator for cancer invasion. According to an electrophoretic morbidity shift assay, pretreatment with MECF in MDA-MB-231 cells significantly decreased the TNF-α-induced DNA-binding activity of NF-κB, which is an important transcription factor for regulating cancer invasion-related genes such as MMP-9. Furthermore, treatment with MECF sustained the expression of p65 and p50 in response to TNF-α in the cytosolic compartment. The luciferase assay demonstrated that MECF attenuated TNF-α-induced NF-κB luciferase activity. Conclusion MECF exhibited its anti-invasive capability by downregulating TNF-α-induced MMP-9 expression, resulting from the suppression of NF-κB activity in the human breast cancer cell line MDA-MB-231.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA