Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Tissue Engineering Research ; (53): 745-751, 2015.
Artigo em Chinês | WPRIM | ID: wpr-462228

RESUMO

BACKGROUND:Matrix protein is an essential component of the vascular wal , provides a necessary frame for the integrity of the vessel wal and physiological function of vascular wal cel s, and regulates cel s and smooth muscle. OBJECTIVE:To construct rat model of early aneurysm, and to evaluate differences in the expression of matrix structural proteins during cerebral aneurysm formation. METHODS:Twenty-eight healthy male Sprague-Dawley rats were randomized into control group (n=8) and model group (n=20). Aneurysm model was established by ligation of the left common carotid artery and right renal artery-induced hypertension in the model group. In the control group, only the left carotid artery bifurcation and bilateral carotid were exposed in rats. Rats in the model group were sacrificed at 15 and 30 days after model establishment. Right anterior cerebral artery in rats and olfactory artery bifurcation received immunohistochemical staining. The expressions of fibronectin,α-smooth muscle actin and col agen III were analyzed. RESULTS AND CONCLUSION:Compared with the control group, no significant difference in fibronectin expression was detected in right anterior cerebral artery and olfactory artery bifurcation in rats of the model group at 30 days after model establishment (P>0.05). However,α-smooth muscle actin and col agen III expressions were significantly reduced (P<0.05). These data confirmed that expression of structural proteins had differences and dynamic changes during early aneurysm formation in rats. Degradation of matrix structural protein in cerebral artery may be one of the key mechanism of aneurysm formation.

2.
Chinese Journal of Tissue Engineering Research ; (53): 1009-1014, 2014.
Artigo em Chinês | WPRIM | ID: wpr-444731

RESUMO

BACKGROUND:Mesenchymal stem celltransplantation promoted skin repair in trauma via various regulatory mechanisms and inhibited scar formation. At present, many scholars believed that bioactive factors secreted by mesenchymal stem cells played an important role. OBJECTIVE:To investigate the effects of bone marrow mesenchymal stem cellconditioned medium on the proliferation and col agen synthesis of hypertrophic scar fibroblasts. METHODS:Human bone marrow mesenchymal stem cells and hypertrophic scar fibroblasts were isolated and cultured, and bone marrow mesenchymal stem cellconditioned medium was prepared. Hypertrophic scar fibroblasts were cultured in vitro with 12, 24, and 48 hour-col ected conditioned medium for 24 hours, which was compared with blank control group. The proliferation of cells was determined by CCK-8. Type I and type III col agen expression in hypertrophic scar fibroblasts was detected using real-time PCR. RESULTS AND CONCLUSION:Compared with the blank control group, 24 and 48 hour-col ected conditioned medium significantly inhibited the proliferation of hypertrophic scar fibroblasts (P<0.01), and also suppressed col agen synthesis of hypertrophic scar fibroblasts (P<0.01). Results suggested that bone marrow mesenchymal stem cellconditioned medium inhibited the proliferation and col agen synthesis of hypertrophic scar fibroblasts by secreting anti-fibrotic bioactive factors, which may provide new theoretical supports for celltherapy to reduce cutaneous scarring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA