Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1431367

RESUMO

ABSTRACT Rhodnius prolixus is the most important vector of Trypanosoma cruzi in the northern part of South America. The compound eyes in adults of R. prolixus are involved in the nocturnal flight dispersion from sylvatic environments into human dwellings. During this behavior, the artificial lights play an important role in attracting R. prolixus; however, it is still not clear whether the compound eyes of this species use different visible wavelengths as a cue during active dispersion. We applied electrophysiological (electroretinography or ERG) and behavioral (take-off) experiments in a controlled laboratory setting to determine the spectral sensitivity of the compound eyes and the attraction of R. prolixus adults to discrete visible wavelengths. For the ERG experiments, flashes of 300 ms at wavelengths ranging between 350 and 700 nm at a constant intensity of 3.4 µW/cm2 were tested after adaptation to darkness and to blue and yellow lights. For the behavioral experiments, the adults were exposed to nine visible wavelengths at three different intensities, and their direction of take-off in an experimental arena was established with circular statistics. The ERG results showed peaks of spectral sensitivity at 470-490 nm and 520-550 nm in adults, while behavioral experiments showed attractions to blue, green and red lights, depending on the intensity of the light stimuli. The electrophysiological and behavioral results confirm that R. prolixus adults can detect certain wavelengths in the visible spectrum of light and be attracted to them during take-off.

2.
Rev. bras. entomol ; 66(2): e20220023, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1376630

RESUMO

ABSTRACT The sensilla of insects play important roles in odor, taste, the feeling environment, and some sensory functions, which are closely associated with insect host locating, feeding, habitat searching, courtship, mating, and oviposition. In this study, we used a scanning electron microscope to observe the external morphology of nymph and adult Frankliniella occidentalis sensilla on antennae, compound eyes, legs, mouthparts, wings and tail. The results show that three main types of sensilla are located on the antennae: sensilla trichodea, sensilla chaetica, and sensilla basiconica. Among them, sensilla trichodea are the most abundant, followed by sensilla chaetica. Sensilla basiconica on antennae are divided into seven sub-styles, including longer sensilla (L-sensilla basiconica, long sensilla basiconica), shorter sensilla (angle sensilla basiconica, bud sensilla basiconica), and thicker and bigger sensilla (stick sensilla basiconica, fork sensilla basiconica, and finger sensilla basiconica). Only two fork sensilla basiconica were found, located on the dorsal part of the first flagellum subsegment and the ventral part of the second flagellum subsegment, respectively. Seven sensillum types were found on the legs: sensilla trichodea, sensilla chaetica, sensilla basiconica, sensilla ear washing buob-shaped, mamillary sensilla, sensilla campaniform, and Böhm bristle. About 60% of them are sensilla chaetica. Only one sensillum type was found on compound eyes: sensilla chaetica. In addition, some sensillum types were also found on the mouthparts, wings and tail, respectively. In the study, we observed the type, morphology, and distribution of sensilla on antennae, legs, compound eyes, and other regions of nymph and adult F. occidentalis, forming a base for future electrophysiological and behavior experiments on F. occidentalis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA