Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
The Journal of Korean Academy of Prosthodontics ; : 224-231, 2010.
Artigo em Coreano | WPRIM | ID: wpr-158521

RESUMO

PURPOSE: This study was to investigate how the crestal module design could affect the level of marginal bone stress around dental implant. MATERIALS AND METHODS: A submerged implant of 4.1 mm in diameter and 10 mm in length was selected as baseline model (Dentis Co., Daegu,Korea).A total of 5 experimental implants of different crestal modules were designed (Type I model : with microthread at the cervical 3 mm, Type II model : the same thread pattern as Type I but with a trans-gingival module, Type III model: the same thread pattern as the control model but with a trans-gingival module, Type IV model: one piece system with concave transgingival part, Type V model: equipped with beveled platform). Stress analysis was conducted with the use of axisy mmetric finite element modeling scheme. A force of 100 N was applied at 30 degrees from the implant axis. RESULTS: Stress analysis has shown no stress concentration around the marginal bone for the control model. As compared to the control model, the stress levels of 0.2 mm areas away from the recorded implant were slightly lower in Type I and Type IV models, but higher in Type II, Type III and Type V models. As compared to 15.09 MPa around for the control model, the stress levels were 14.78 MPa, 18.39 MPa, 21.11 MPa, 14.63 MPa, 17.88 MPa in the cases of Type I, II, III, IV and V models. CONCLUSION: From these results, the conclusion was drawn that the microthread and the concavity with either crestal or trans-gingival modules maybe used in standard size dental implants to reduce marginal bone stress.


Assuntos
Vértebra Cervical Áxis , Implantes Dentários , Implantes Experimentais
2.
The Journal of Korean Academy of Prosthodontics ; : 385-393, 2009.
Artigo em Coreano | WPRIM | ID: wpr-225465

RESUMO

STATEMENT OF PROBLEM: High stress concentration on the crestal cortical bone has been regraded as a major etiologic factor jeopardizing long term stability of endosseous implants. PURPOSE: To investigate if the design characteristics of crestal module, i.e. internal type, external type, and submerged type, affect stress distribution on the crestal cortical bone. MATERIAL AND METHODS: A cylindrical shaped implant, 4.3 mm in diameter and 10 mm in length, with 3 different crestal modules, i.e. internal type, external type, and submerged type, were analysed. An axisymmetric scheme was used for finite elment formulation. A vertical load of 50 N and an oblique load of 50 N acting at 45degrees with the implant's long axis was applied. The peak crestal bone stress acting at the intersection of implant and crestal bone was compared. RESULTS: Under vertical load, the crestal bone stress was high in the order of internal, external, and submerged types. Under the oblique loading condition, it was in the order of internal, submerged, and external types. CONCLUSION: Crestal module design was found to affect the level of the crestal bone stresses although the actual amount was not significant.


Assuntos
Vértebra Cervical Áxis , Implantes Dentários , Análise de Elementos Finitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA