Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Rev. biol. trop ; 72(supl.1): e58880, Mar. 2024. graf
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1559333

RESUMO

Abstract Introduction: Echinoderms, an integral component of marine ecosystems worldwide, have captivated scientific interest for centuries. Despite this longstanding attention, comprehending key facets such as trophic relationships, diet composition, and host-microbiota relationships still represents a challenge using traditional techniques. Recent years, however, have witnessed a transformative shift, thanks to the emergence of advanced molecular techniques, offering new approaches to strengthen ecological studies in echinoderms. Objective: Explore how recent advancements in molecular tools have impacted ecological research on echinoderms. Specifically, we aim to investigate the potential of these tools to shed light on trophic interactions, diet composition, and the characterization of gut microbial communities in these organisms. Methods: Available literature was used to clarify how novel molecular techniques can improve ecological studies. The focus is diet, trophic relationships, and gut microbiota. Results: Traditionally, studies of stomach contents using compound microscopy have provided an idea of ingested material; nevertheless, sometimes a simple magnified visualization of dietary content does not allow exhaustive identification of the entire food spectrum, as it is limited due to the rapid digestion and maceration of food items within the echinoderm's digestive tract. The use of DNA-metabarcoding, targeting specific DNA regions, such as the mitochondrial COI gene, has allowed us to enhance the accuracy and precision of diet characterization by enabling the identification of prey items down to the species or even genetic variant level, providing valuable insights into specific dietary preferences. Another approach is the use of stable isotopes, particularly carbon and nitrogen, which provide a powerful tool to trace the origin and flow of nutrients through food webs. By analyzing the isotopic signatures in muscular tissues and food items, we can discern the sources of their primary food items and gain insights into their trophic position within the ecosystem. Lastly, a third new technique used to elucidate the characterization of the prokaryotic community is 16S rRNA sequencing. This method allows us to explore the composition and dynamics of the digestive tract microbial communities. Conclusions: This is a promising era for ecological research on echinoderms, where advances of molecular tools have enabled an unprecedented level of detail, resolving longstanding challenges in comprehending their trophic interactions, diet composition, and host-microbiota relationships, and opening new avenues of investigation in ecological studies.


Resumen Introducción: Los equinodermos, un componente integral de los ecosistemas marinos en todo el mundo, han captado el interés científico durante siglos. A pesar de esta prolongada atención, el comprender facetas clave como las relaciones tróficas, la composición de la dieta y las relaciones huésped-microbiota todavía representa un desafío utilizando técnicas tradicionales. Sin embargo, los últimos años han sido testigos de un cambio transformador, gracias a la aparición de técnicas moleculares avanzadas, que ofrecen nuevos enfoques para fortalecer los estudios ecológicos en equinodermos. Objetivo: Explorar cómo los avances recientes en herramientas moleculares han impactado la investigación ecológica sobre equinodermos. Específicamente, nuestro objetivo es investigar el potencial de estas herramientas para arrojar luz sobre las interacciones tróficas, la composición de la dieta y la caracterización de las comunidades microbianas intestinales en estos organismos. Métodos: Se utilizó la literatura disponible para aclarar cómo las nuevas técnicas moleculares pueden mejorar los estudios ecológicos. La atención se centra en la dieta, las relaciones tróficas y la microbiota intestinal. Resultados: Tradicionalmente, los estudios del contenido estomacal mediante microscopía compuesta han proporcionado una idea del material ingerido; Sin embargo, a veces una simple visualización ampliada del contenido dietético no permite una identificación exhaustiva de todo el espectro alimentario, ya que está limitado debido a la rápida digestión y maceración de los alimentos dentro del tracto digestivo del equinodermo. El uso de metabarcoding de ADN, dirigidos a regiones específicas del ADN, como el gen COI mitocondrial, nos ha permitido mejorar la exactitud y precisión de la caracterización de la dieta al permitir la identificación de presas hasta el nivel de especie o incluso de variante genética, lo que proporciona valiosos resultados sobre preferencias dietéticas específicas. Otro enfoque es el uso de isótopos estables, en particular carbono y nitrógeno, que proporcionan una poderosa herramienta para rastrear el origen y el flujo de nutrientes a través de las redes alimentarias. Al analizar las firmas isotópicas en los tejidos musculares y los alimentos, podemos discernir las fuentes de sus alimentos primarios y obtener información sobre su posición trófica dentro del ecosistema. Por último, una tercera técnica nueva utilizada para dilucidar la caracterización de la comunidad procariótica es la secuenciación del ARNr 16S. Este método nos permite explorar la composición y dinámica de las comunidades microbianas del tracto digestivo. Conclusiones: Esta es una era prometedora para la investigación ecológica sobre equinodermos, donde los avances de las herramientas moleculares han permitido un nivel de detalle sin precedentes, resolviendo desafíos de larga data en la comprensión de sus interacciones tróficas, composición de la dieta y relaciones huésped-microbiota, y abriendo nuevas vías de investigación. en estudios ecológicos.


Assuntos
Animais , Técnicas de Diagnóstico Molecular , Dieta , Equinodermos , DNA , Isótopos
2.
Chinese Herbal Medicines ; (4): 143-150, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1010757

RESUMO

OBJECTIVE@#Angelicae Sinensis Radix (ASR, Danggui in Chinese), Cistanches Herba (CH, Roucongrong in Chinese), Ginseng Radix et Rhizoma (PG, Renshen in Chinese), and Panacis Quinquefolii Radix (PQ, Xiyangshen in Chinese), widely used as medicine and dietary supplement around the world, are susceptible to fungal and mycotoxin contamination. In this study, we aim to analyze their fungal community by DNA metabarcoding.@*METHODS@#A total of 12 root samples were collected from three main production areas in China. The samples were divided into four groups based on herb species, including ASR, CH, PG, and PQ groups. The fungal community on the surface of four root groups was investigated through DNA metabarcoding via targeting the internal transcribed spacer 2 region (ITS2).@*RESULTS@#All the 12 samples were detected with fungal contamination. Rhizopus (13.04%-74.03%), Aspergillus (1.76%-23.92%), and Fusarium (0.26%-15.27%) were the predominant genera. Ten important fungi were identified at the species level, including two potential toxigenic fungi (Penicillium citrinum and P. oxalicum) and eight human pathogenic fungi (Alternaria infectoria, Candida sake, Hyphopichia burtonii, Malassezia globosa, M. restricta, Rhizopus arrhizus, Rhodotorula mucilaginosa, and Ochroconis tshawytschae). Fungal community in ASR and CH groups was significantly different from other groups, while fungal community in PG and PQ groups was relatively similar.@*CONCLUSION@#DNA metabarcoding revealed the fungal community in four important root herbs. This study provided an important reference for preventing root herbs against fungal and mycotoxin contamination.

3.
Acta Pharmaceutica Sinica ; (12): 2295-2301, 2021.
Artigo em Chinês | WPRIM | ID: wpr-887036

RESUMO

Medicinal and edible Armeniacae Semen Amarum (ASA) is susceptible to fungal contamination because it is rich in oil and other nutrients. In this study, the fungal community diversity in ASA samples was analyzed based on a DNA metabarcoding technique to provide evidence for its safe use. Twelve batches of ASA samples samples from four medicinal material markets and three processing approaches were collected. Total DNA was extracted, the ITS2 sequences were amplified, and high-throughput sequencing was performed using the Illumina MiSeq PE300 platform. The results show that Ascomycota was the most dominant fungus in ASA samples. The predominant genus in sample SW1_P was Diutina, whereas the most predominant genus in the other samples was Aspergillus. Three harmful fungi were identified, namely, Aspergillus flavus, Wallemia sebi, and Rhizopus arrhizus. In addition, significant differences were observed in the relative abundance of Botryosphaeriales and Alternaria in ASA samples from different collection sites. Meanwhile, there were significant differences in the relative abundance of Hypocreales and Cladosporium in ASA samples from different processing approaches. In summary, the DNA metabarcoding technique can effectively clarify the fungal community diversity and quickly detect potential toxigenic fungi in ASA samples, thus providing a warning for mycotoxin contamination.

4.
China Journal of Chinese Materia Medica ; (24): 261-264, 2019.
Artigo em Chinês | WPRIM | ID: wpr-777445

RESUMO

Metabarcoding technology is a research method derived from the combination of traditional DNA barcodes and highthroughput sequencing technologies. It can quickly,easily and efficiently identify and restore biological samples from multiple species.Biological species are currently widely used in environmental biology research. In the market of traditional Chinese medicines,adulteration and quality instability have severely restricted the sustainable development of the related industries. This article introduced the background of the metabarcoding technology and its preliminary application in the identification of Chinese patent medicines. It also outlined the possible problems in the research process and prospected to the development of the DNA metabarcoding technology.


Assuntos
DNA , Código de Barras de DNA Taxonômico , Medicamentos de Ervas Chinesas , Padrões de Referência , Medicina Tradicional Chinesa , Medicamentos sem Prescrição , Padrões de Referência
5.
China Journal of Chinese Materia Medica ; (24): 1-8, 2019.
Artigo em Chinês | WPRIM | ID: wpr-771525

RESUMO

DNA metabarcoding,one rapid and robust method using specific standard DNA fragments,has been widely used for rapid species identification of a bulk sample through high-throughput sequencing technologies.While it has been widely used in the studies of metagenomics,animal and plant biodiversity,it has gradually come to be used as a profitable method in species identification of mixed Chinese herbal medicines.In this paper,we mainly summarize the current studies of the application of DNA metabarcoding in species identification of mixed Chinese herbal medicines.Moreover,high-throughput sequencing technologies adopted in those studies,such as Sanger,the next-generation,and third-generation sequencing technologies,are discussed.It is conducted to provide a theoretical guidance for the application of DNA metabarcoding in species identification of mixed Chinese herbal medicines and in more other biodiversity studies.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , DNA de Plantas , Genética , Medicamentos de Ervas Chinesas , Sequenciamento de Nucleotídeos em Larga Escala , Plantas Medicinais , Classificação
6.
Chinese Traditional and Herbal Drugs ; (24): 3471-3476, 2019.
Artigo em Chinês | WPRIM | ID: wpr-850998

RESUMO

Seeds are the source of the Chinese medicine industry. The accurate identification of seeds is not only related to the genuineness of Chinese medicinal materials, but also related to the safety and effectiveness of traditional Chinese medicine. Since a large proportion of Chinese medicinal material seeds are small in size, rich in inclusions, and their morphological characters are easy to be changed by the grade of maturity and environmental conditions, it is difficult to identify seeds through traditional methods. DNA barcoding is a novel genetic method designed for accurate species identification using a standard DNA locus, and it has gradually become a research hotspot for the seed authentication of Chinese medicinal materials. In this paper, we briefly summarized the recent research developments of the DNA barcoding identification for Chinese medicinal material seeds, demonstrate the technical characteristics of using DNA barcoding to authenticate the seeds of Chinese medicinal materials, and pointed out that different protocols should be employed according to the types of seeds. We further proposed a research method for the identification of commercially available Chinese medicinal materials seed mixtures using the DNA metabarcoding, which provides new ideas for the identification of Chinese medicinal material seeds.

7.
Acta Pharmaceutica Sinica B ; (6): 488-497, 2018.
Artigo em Inglês | WPRIM | ID: wpr-690890

RESUMO

Global concerns have been paid to the potential hazard of traditional herbal medicinal products (THMPs). Substandard and counterfeit THMPs, including traditional Chinese patent medicine, health foods, dietary supplements, etc. are potential threats to public health. Recent marketplace studies using DNA barcoding have determined that the current quality control methods are not sufficient for ensuring the presence of authentic herbal ingredients and detection of contaminants/adulterants. An efficient biomonitoring method for THMPs is of great needed. Herein, metabarcoding and single-molecule, real-time (SMRT) sequencing were used to detect the multiple ingredients in Jiuwei Qianghuo Wan (JWQHW), a classical herbal prescription widely used in China for the last 800 years. Reference experimental mixtures and commercial JWQHW products from the marketplace were used to confirm the method. Successful SMRT sequencing results recovered 5416 and 4342 circular-consensus sequencing (CCS) reads belonging to the ITS2 and regions. The results suggest that with the combination of metabarcoding and SMRT sequencing, it is repeatable, reliable, and sensitive enough to detect species in the THMPs, and the error in SMRT sequencing did not affect the ability to identify multiple prescribed species and several adulterants/contaminants. It has the potential for becoming a valuable tool for the biomonitoring of multi-ingredient THMPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA