RESUMO
RESUMEN Fundamento: Los estudios de causalidad deben aportar resultados certeros, lo cual depende de la adecuación de los mismos, de ahí la necesidad de conocer los métodos que aseguren la validez de estas investigaciones. Objetivo: Sistematizar los métodos actuales para el estudio de causalidad en Medicina que incluye el diseño, los requerimientos que aseguran su validez y los métodos para el cumplimiento de estos requerimientos. Desarrollo: Se realizó una revisión bibliográfica en bases de datos biomédicas, se seleccionó la literatura de mayor actualidad, integralidad y cientificidad con la cual se organizó una síntesis crítica, a la que se le agregó la experiencia de las autoras. Se presentan técnicas para la detección y tratamiento de la confusión y la interacción y para garantizar la comparabilidad entre grupos. Entre las técnicas se destacan la aleatorización mendeliana, el puntaje de susceptibilidad, los G-métodos, los modelos estructurales marginales y anidados, la lógica difusa y el análisis estadístico implicativo. Conclusiones: A pesar del avance en los métodos estadísticos es el investigador el encargado de garantizar la no confusión residual y discernir entre lo estadísticamente significativo y lo clínicamente aceptable.
ABSTRACT Background: Causality studies must provide accurate results, which depends on their adequacy, therefore the need of knowing the methods that ensure the validity of these investigations. Objective: To systematize the current methods for the study of causality in Medicine that includes the design, the requirements that ensure its validity and the methods for complying with these requirements. Development: It was carried out a bibliographic review in biomedical databases and selected the most current, comprehensive, scientific literature, with this, a critical synthesis was organized, with the experience of the authors. Techniques for the detection and treatment of confusion and interaction were presented, also to ensure comparability between groups. Among the techniques, Mendelian randomization, susceptibility score, G-methods, marginal and nested structural models, fuzzy logic and implicative statistical analysis stand out. Conclusions: Despite the progress in statistical methods, the researcher is responsible for guaranteeing residual non-confusion and distinguishing between statistically significant and clinically acceptable.