Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.287
Filtrar
1.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1559732

RESUMO

Introducción: El cáncer de endometrio ocupa el sexto lugar en incidencia del cáncer en mujeres. La caracterización molecular de este cáncer permite optimizar la estratificación de riesgo para mejorar el tratamiento de las pacientes. Objetivo: Determinar el perfil molecular TCGA de pacientes con cáncer de endometrio en Bogotá, D.C., Colombia. Método: Estudio descriptivo en una cohorte de pacientes con cáncer de endometrio. Las mutaciones en los exones 9 a 14 del gen POLE fueron identificadas mediante amplificación por reacción en cadena de la polimerasa, seguida de secuenciación Sanger y análisis bioinformático. La expresión de las proteínas MMR y p53 se identificó mediante inmunohistoquímica. Resultados: Se incluyeron 40 pacientes con una mediana de edad de 66 años. El 15% presentaron mutaciones en el dominio exonucleasa de POLE. El 32% de las pacientes que no presentaron mutaciones manifestaron deficiencia en el sistema MMR. El 43,47% de las pacientes sin mutaciones en POLE ni alteración del sistema MMR presentaron alteración de la proteína p53. Conclusiones: La población de cáncer de endometrio analizada presenta un perfil molecular TCGA similar a lo reportado para otras poblaciones.


Introduction: Endometrial cancer ranks sixth in cancer incidence among women. Its molecular characterization allows for a more precise risk stratification with the aim of improving patient treatment. Objective: To determine the TCGA molecular profile of patients with endometrial cancer in Bogota, Colombia. Method: A descriptive study of a cohort of patients with endometrial cancer. The expression of MMR proteins and p53 was identified through immunohistochemistry. Mutations in exons 9 to 14 of the POLE gene were identified through polymerase chain reaction amplification, followed by Sanger sequencing and bioinformatic analysis. Results: Forty patients were included in the study, with a median age of 66 years, 15% of them exhibited mutations in the exonuclease domain of POLE, while 32% of patients without mutations showed deficiency in the MMR system. Forty three percent of patients without mutations in POLE or MMR alterations showed aberrant p53 protein expression. Conclusions: The analyzed population of endometrial cancer presents a TCGA molecular profile similar to that reported for other populations.

2.
Rev. biol. trop ; 72(supl.1): e58997, Mar. 2024. tab, graf
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1559342

RESUMO

Abstract Introduction: Molecular divergence thresholds have been proposed to distinguish recently separated evolutive units, often displaying more accurate putative species assignments in taxonomic research compared to traditional morphological approaches. This makes DNA barcoding an attractive identification tool for a variety of marine invertebrates, especially for cryptic species complexes. Although GenBank and the Barcode of Life Data System (BOLD) are the major sequence repositories worldwide, very few have tested their performance in the identification of echinoderm sequences. Objective: We use COI echinoderm sequences from local samples and the molecular identification platforms from GenBank and BOLD, in order to test their accuracy and reliability in the DNA barcoding identification for Central American shallow water echinoderms, at genus and species level. Methods: We conducted sampling, tissue extraction, COI amplification, sequencing, and taxonomic identification for 475 specimens. The 348 obtained sequences were individually enquired with BLAST in GenBank as well as using the Identification System (IDS) in BOLD. Query sequences were classified depending on the best match result. McNemar's chi-squared, Kruskal-Wallis's and Mann-Whitney's U tests were performed to prove differences between the results from both databases. Additionally, we recorded an updated list of species reported for the shallow waters of the Central American Pacific. Results: We found 324 echinoderm species reported for Central American Pacific shallow waters. Only 118 and 110 were present in GenBank and BOLD databases respectively. We proposed 325 solved morphology-based identities and 21 provisional identifications in 50 putative taxa. GenBank retrieved 348 molecular-based identifications in 58 species, including twelve provisional identifications in tree taxa. BOLD recovered 170 COI identifications in 23 species with one provisional identification. Nevertheless, 178 sequences retrieved unmatched terms (in 34 morphology-based taxa). Only 86 sequences (25 %) were retrieved as correct identifications and 128 (37 %) as identification errors in both platforms. We include 84 sequences for eleven species not represented in GenBank and 65 sequences for ten species in BOLD Echinoderm COI databases. The identification accuracy using BLAST (175 correct and 152 incorrect identifications) was greater than with IDS engine (110 correct and 218 identification errors), therefore GenBank outperforms BOLD (Kruskal-Wallis = 41.625, df = 1, p < 0.001). Conclusions: Additional echinoderm sample references are needed to improve the utility of the evaluated DNA barcoding identification tools. Identification discordances in both databases may obey specific parameters used in each search algorithm engine and the available sequences. We recommend the use of barcoding as a complementary identification source for Central American Pacific shallow water echinoderm species.


Resumen Introducción: Se han propuesto los umbrales de divergencia molecular para distinguir unidades evolutivas recientemente separadas, que a menudo muestran asignaciones de especies putativas más precisas en la investigación taxonómica en comparación con los enfoques morfológicos tradicionales. Esto hace que los Códigos de Barras de ADN sean una herramienta de identificación atractiva para una variedad de invertebrados marinos, especialmente para complejos de especies crípticas. Aunque GenBank y Barcode of Life Data System (BOLD) son los principales repositorios de secuencias en todo el mundo, muy pocos han probado su desempeño en la identificación de secuencias de equinodermos. Objetivo: Utilizamos secuencias de equinodermos COI de muestras locales y las plataformas de identificación molecular de GenBank y BOLD, para probar su precisión y confiabilidad en la implementación de códigos de barras de ADN para equinodermos de aguas someras de Centroamérica, a nivel de género y especie. Métodos: Realizamos muestreo, extracción de tejido, amplificación de COI, secuenciación e identificación taxonómica de 475 especímenes. Las 348 secuencias obtenidas fueron consultadas individualmente con BLAST en GenBank así como utilizando el Sistema de Identificación (IDS) en BOLD. Las secuencias consultadas se clasificaron según el mejor resultado de coincidencia. Se realizaron las pruebas chi-cuadrado de McNemar, Kruskal-Wallis y U de Mann-Whitney para comprobar diferencias entre los resultados de ambas bases de datos. Además, registramos una lista actualizada de especies reportadas para las aguas someras del Pacífico Centroamericano. Resultados: Encontramos 324 especies de equinodermos reportadas para aguas someras (< 200 m) del Pacífico centroamericano. Sólo 118 y 110 estaban presentes en las bases de datos GenBank y BOLD respectivamente. Propusimos 325 identidades resueltas basadas en morfología y 21 identificaciones provisionales en 50 taxones putativos. GenBank recuperó 348 identificaciones de base molecular en 58 especies, incluidas doce identificaciones provisionales en tres taxones. BOLD recuperó 170 identificaciones de COI en 23 especies con una identificación provisional. Sin embargo, 178 secuencias recuperaron términos no coincidentes (en 34 taxones basados en morfología). Sólo 86 secuencias (25 %) se recuperaron como identificaciones correctas y 128 (37 %) como errores de identificación en ambas plataformas. Incluimos 84 secuencias para once especies no representadas en GenBank y 65 secuencias para diez especies ausentes en las bases de datos BOLD Echinoderm COI. La precisión de la identificación usando BLAST (175 identificaciones correctas y 152 incorrectas) fue mayor que con el motor IDS (110 correctas y 218 errores de identificación), por lo tanto, GenBank supera a BOLD (Kruskal-Wallis = 41.625, df = 1, p < 0.001). Conclusiones: Se necesitan muestras adicionales de equinodermos de referencia para mejorar la utilidad de las herramientas de identificación de códigos de barras de ADN evaluadas. Las discordancias de identificación en ambas bases de datos pueden obedecer a parámetros específicos utilizados en cada algoritmo de búsqueda y a las secuencias disponibles. Recomendamos el uso de códigos de barras como fuente de identificación complementaria para las especies de equinodermos de aguas someras del Pacífico centroamericano.


Assuntos
Animais , DNA , Processamento Eletrônico de Dados , Equinodermos/classificação , Amostragem Estratificada , Costa Rica
3.
Rev. biol. trop ; 72(supl.1): e58880, Mar. 2024. graf
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1559333

RESUMO

Abstract Introduction: Echinoderms, an integral component of marine ecosystems worldwide, have captivated scientific interest for centuries. Despite this longstanding attention, comprehending key facets such as trophic relationships, diet composition, and host-microbiota relationships still represents a challenge using traditional techniques. Recent years, however, have witnessed a transformative shift, thanks to the emergence of advanced molecular techniques, offering new approaches to strengthen ecological studies in echinoderms. Objective: Explore how recent advancements in molecular tools have impacted ecological research on echinoderms. Specifically, we aim to investigate the potential of these tools to shed light on trophic interactions, diet composition, and the characterization of gut microbial communities in these organisms. Methods: Available literature was used to clarify how novel molecular techniques can improve ecological studies. The focus is diet, trophic relationships, and gut microbiota. Results: Traditionally, studies of stomach contents using compound microscopy have provided an idea of ingested material; nevertheless, sometimes a simple magnified visualization of dietary content does not allow exhaustive identification of the entire food spectrum, as it is limited due to the rapid digestion and maceration of food items within the echinoderm's digestive tract. The use of DNA-metabarcoding, targeting specific DNA regions, such as the mitochondrial COI gene, has allowed us to enhance the accuracy and precision of diet characterization by enabling the identification of prey items down to the species or even genetic variant level, providing valuable insights into specific dietary preferences. Another approach is the use of stable isotopes, particularly carbon and nitrogen, which provide a powerful tool to trace the origin and flow of nutrients through food webs. By analyzing the isotopic signatures in muscular tissues and food items, we can discern the sources of their primary food items and gain insights into their trophic position within the ecosystem. Lastly, a third new technique used to elucidate the characterization of the prokaryotic community is 16S rRNA sequencing. This method allows us to explore the composition and dynamics of the digestive tract microbial communities. Conclusions: This is a promising era for ecological research on echinoderms, where advances of molecular tools have enabled an unprecedented level of detail, resolving longstanding challenges in comprehending their trophic interactions, diet composition, and host-microbiota relationships, and opening new avenues of investigation in ecological studies.


Resumen Introducción: Los equinodermos, un componente integral de los ecosistemas marinos en todo el mundo, han captado el interés científico durante siglos. A pesar de esta prolongada atención, el comprender facetas clave como las relaciones tróficas, la composición de la dieta y las relaciones huésped-microbiota todavía representa un desafío utilizando técnicas tradicionales. Sin embargo, los últimos años han sido testigos de un cambio transformador, gracias a la aparición de técnicas moleculares avanzadas, que ofrecen nuevos enfoques para fortalecer los estudios ecológicos en equinodermos. Objetivo: Explorar cómo los avances recientes en herramientas moleculares han impactado la investigación ecológica sobre equinodermos. Específicamente, nuestro objetivo es investigar el potencial de estas herramientas para arrojar luz sobre las interacciones tróficas, la composición de la dieta y la caracterización de las comunidades microbianas intestinales en estos organismos. Métodos: Se utilizó la literatura disponible para aclarar cómo las nuevas técnicas moleculares pueden mejorar los estudios ecológicos. La atención se centra en la dieta, las relaciones tróficas y la microbiota intestinal. Resultados: Tradicionalmente, los estudios del contenido estomacal mediante microscopía compuesta han proporcionado una idea del material ingerido; Sin embargo, a veces una simple visualización ampliada del contenido dietético no permite una identificación exhaustiva de todo el espectro alimentario, ya que está limitado debido a la rápida digestión y maceración de los alimentos dentro del tracto digestivo del equinodermo. El uso de metabarcoding de ADN, dirigidos a regiones específicas del ADN, como el gen COI mitocondrial, nos ha permitido mejorar la exactitud y precisión de la caracterización de la dieta al permitir la identificación de presas hasta el nivel de especie o incluso de variante genética, lo que proporciona valiosos resultados sobre preferencias dietéticas específicas. Otro enfoque es el uso de isótopos estables, en particular carbono y nitrógeno, que proporcionan una poderosa herramienta para rastrear el origen y el flujo de nutrientes a través de las redes alimentarias. Al analizar las firmas isotópicas en los tejidos musculares y los alimentos, podemos discernir las fuentes de sus alimentos primarios y obtener información sobre su posición trófica dentro del ecosistema. Por último, una tercera técnica nueva utilizada para dilucidar la caracterización de la comunidad procariótica es la secuenciación del ARNr 16S. Este método nos permite explorar la composición y dinámica de las comunidades microbianas del tracto digestivo. Conclusiones: Esta es una era prometedora para la investigación ecológica sobre equinodermos, donde los avances de las herramientas moleculares han permitido un nivel de detalle sin precedentes, resolviendo desafíos de larga data en la comprensión de sus interacciones tróficas, composición de la dieta y relaciones huésped-microbiota, y abriendo nuevas vías de investigación. en estudios ecológicos.


Assuntos
Animais , Técnicas de Diagnóstico Molecular , Dieta , Equinodermos , DNA , Isótopos
4.
Rev. Asoc. Méd. Argent ; 137(1): 4-10, mar. 2024.
Artigo em Espanhol | LILACS | ID: biblio-1552830

RESUMO

Se exponen los hallazgos históricos y la importancia biológica de los telómeros en la vida celular y en los aspectos genéticos del ADN humano. (AU)


The discovery and the biological importance of the telomeres are exposed. (AU)


Assuntos
Humanos , DNA/genética , Telômero/fisiologia , Telômero/genética , Telomerase/fisiologia , Telomerase/genética , Envelhecimento/fisiologia , DNA/metabolismo , Senescência Celular , Telomerase/metabolismo , Replicação do DNA/fisiologia , Encurtamento do Telômero , Neoplasias/fisiopatologia
5.
Braz. j. med. biol. res ; 57: e13072, fev.2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1534067

RESUMO

Immature hematopoietic progenitors are a constant source for renewal of hemocyte populations and the basic component of the tissue and cell repair apparatus. A unique property of these cells of internalizing extracellular double-stranded DNA has been previously shown. The leukostimulatory effect demonstrated in our pioneering studies was considered to be due to the feature of this cell. In the present research, we have analyzed the effects of DNA genome reconstructor preparation (DNAgr), DNAmix, and human recombinant angiogenin on both hematopoietic stem cells and multipotent progenitors. Treatment with bone marrow cells of experimental mice with these preparations stimulates colony formation by hematopoietic stem cells and proliferation of multipotent descendants. The main lineage responsible for this is the granulocyte-macrophage hematopoietic lineage. Using fluorescent microscopy as well as FACS assay, co-localization of primitive c-Kit- and Sca-1-positive progenitors and the TAMRA-labeled double-stranded DNA has been shown. Human recombinant angiogenin was used as a reference agent. Cells with specific markers were quantified in intact bone marrow and colonies grown in the presence of inducers. Quantitative analysis revealed that a total of 14,000 fragment copies of 500 bp, which is 0.2% of the haploid genome, can be delivered into early progenitors. Extracellular double-stranded DNA fragments stimulated the colony formation in early hematopoietic progenitors from the bone marrow, which assumed their effect on cells in G0. The observed number of Sca1+/c-Kit+ cells in colonies testifies to the possibility of both symmetrical and asymmetrical division of the initial hematopoietic stem cell and its progeny.

6.
Rev. Fac. Med. UNAM ; 67(1): 8-16, ene.-feb. 2024. graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1559095

RESUMO

Resumen Se calcula que el cuerpo humano está conformado por billones de células, las cuales sufren cientos de miles de lesiones al día en su DNA. Aunque el DNA no es la única biomolécula que sufre daños, su importancia radica en que es la única que no puede ser sustituida por la célula, así que, cuando esta sufre daños, la célula debe repararlos, tolerarlos o, en el caso extremo, activar las vías que la llevarán a la muerte, ya que lo importante es mantener la integridad celular y la homeostasis del organismo. Hay miles de agentes que pueden dañar al DNA, algunos los produce la misma célula y se les denomina 'agentes endógenos', mientras que otros son agentes externos y se les conoce como 'agentes exógenos'. La célula no puede evitar el daño causado por los agentes endógenos, ya que son productos de la actividad metabólica, por ejemplo; así que, cuando suceden se activan de forma inmediata los mecanismos celulares para mitigarlos. Lo mismo pasa con los daños causados por agentes exógenos, ya que la célula hará todo lo posible por disminuir los efectos adversos que pueden causar. El problema se pone de manifiesto cuando la célula no puede reparar los daños o los repara mal o son tantos que los mecanismos de reparación se ven rebasados, es entonces cuando el daño permanece en el DNA y se genera un estado de inestabilidad cromosómica que puede conducir a la célula a la disfunción y a la malignización. Este estado de inestabilidad cromosómica se puede ver reflejado en el aumento de rompimientos de DNA o de micronúcleos en las células expuestas, lo que se puede cuantificar por medio de métodos especiales como el 'Ensayo Cometa' y el 'Ensayo de Micronúcleos', ya que identificar el daño en el DNA es una forma de evaluar el potencial tóxico que tienen los agentes a los que están expuestas las poblaciones, permite conocer los mecanismos de acción que tienen y, además, ayuda a comprender los factores que influyen en el detrimento de la salud poblacional.


Abstract It is estimated that the human body is made of trillions of cells, which suffer hundreds of thousands of DNA lesions every day. Although DNA is not the only biomolecule that suffers damage, its importance lies in the fact that it is the only biomolecule that cannot be replaced by the cell, so when it suffers damage, the cell must repair it, tolerate or, in a extreme case, activate pathways that will lead to death, since the objective is to maintain cell integrity and the homeostasis of the organism.There are thousands of agents that can damage DNA, some are produced by the cell and are called 'endogenous, while others are external agents and are known as 'exogenous. The cell cannot avoid the damage caused by endogenous agents, since they are products of its metabolic activity, for example, so when they occur, cellular mechanisms are immediately activated to mitigate them. The same happens with the damage caused by exogenous agents, since the cell will do everything possible to diminish the adverse effects they can cause. The problem becomes apparent when the cell is unable to repair the damage or poorly repairs it, or repairs so much that the mechanisms are overwhelmed, when the damage remains in the DNA and a state of chromosomal instability is generated that can lead the cell to dysfunction and malignization. This state of chromosomal instability can be reflected in increased DNA breaks or micronuclei in exposed cells, which can be quantified by special methods such as the 'Comet Assay' and the 'Micronucleus Assay'. Since identifying DNA damage is a way of evaluating the toxic potential of the agents to which populations are exposed, it allows us to know their mechanisms of action and helps to understand the factors that influence the detriment in population's health.

7.
An. bras. dermatol ; 99(1): 27-33, Jan.-Feb. 2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1527711

RESUMO

Abstract Background: Primary cutaneous CD4+ small/medium-sized pleomorphic T-Cell lymphoproliferative disorder (PC-SMTLD) has been considered as a controversial dermatological disease that has been included in cutaneous T-cell lymphoma group, presenting most commonly as a solitary nodule and/or plaque with a specific and characteristic head and neck predilection. Due to the considerable overlap between PC-SMTLD and pseudolymphoma (PL), the differential diagnosis is often challenging. Methylation of DNA at position 5 of cytosine, and the subsequent reduction in intracellular 5-hydroxymethylcytosine (5-hmC) levels, is a key epigenetic event in several cancers, including systemic lymphomas. However, it has rarely been studied in cutaneous lymphomas. Objectives: The authors aimed to explore the role of differential 5-hmC immunostaining as a useful marker to distinguish PC-SMTLD from PL. Methods: Retrospective case series study with immunohistochemical and immunofluorescence analysis of 5-hmC was performed in PL and PC-SMTLD. Results: Significant decrease of 5-hmC nuclear staining was observed in PC-SMTLD when compared with PL (p<0.0001). By semi-quantitative grade integration, there were statistical differences in the final 5-hmC scores in the two study groups. The IF co-staining of 5-hmC with CD4 revealed a decrease of 5-hmC in CD4+ lymphocytes of PC-SMTLD. Study limitations: The small clinical sample size of the study. Conclusions: The immunorreactivity of 5-hmC in CD4+ lymphocytes was highly suggestive of a benign process as PL. Furthermore, the decrease of 5-hmC nuclear staining in PC-SMTLD indicated its lymphoproliferative status and helped to make the differential diagnosis with PL. © 2023 Sociedade Brasileira de Dermatologia. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

8.
Journal of Clinical Hepatology ; (12): 319-326, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1007247

RESUMO

ObjectiveTo investigate the role and mechanism of DNA repair regulation in the process of hepatocellular carcinoma (HCC) recurrence. MethodsHCC tissue samples were collected from the patients with recurrence within two years or the patients with a good prognosis after 5 years, and the Tandem Mass Tag-labeled quantification proteomic study was used to analyze the differentially expressed proteins enriched in the four pathways of DNA replication, mismatch repair, base excision repair, and nucleotide excision repair, and the regulatory pathways and targets that play a key role in the process of HCC recurrence were analyzed to predict the possible regulatory mechanisms. The independent samples t-test was used for comparison of continuous data between two groups; a one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsFor the eukaryotic replication complex pathway, there were significant reductions in the protein expression levels of MCM2 (P=0.018), MCM3 (P=0.047), MCM4 (P=0.014), MCM5 (P=0.008), MCM6 (P=0.006), MCM7 (P=0.007), PCNA (P=0.019), RFC4 (P=0.002), RFC5 (P<0.001), and LIG1 (P=0.042); for the nucleotide excision repair pathway, there were significant reductions in the protein expression levels of PCNA (P=0.019), RFC4 (P=0.002), RFC5 (P<0.001), and LIG1 (P=0.042); for the base excision repair pathway, there were significant reductions in the protein expression levels of PCNA (P=0.019) and LIG1 (P=0.042) in the HCC recurrence group; for the mismatch repair pathway, there were significant reductions in the protein expression levels of MSH2 (P=0.026), MSH6 (P=0.006), RFC4 (P=0.002), RFC5 (P<0.001), PCNA (P=0.019), and LIG1 (P=0.042) in recurrent HCC tissue. The differentially expressed proteins were involved in the important components of MCM complex, DNA polymerase complex, ligase LIG1, long patch base shear repair complex (long patch BER), and DNA mismatch repair protein complex. The clinical sample validation analysis of important differentially expressed proteins regulated by DNA repair showed that except for MCM6 with a trend of reduction, the recurrence group also had significant reductions in the relative protein expression levels of MCM5 (P=0.008), MCM7 (P=0.007), RCF4 (P=0.002), RCF5 (P<0.001), and MSH6 (P=0.006). ConclusionThere are significant reductions or deletions of multiple complex protein components in the process of DNA repair during HCC recurrence.

9.
Cancer Research on Prevention and Treatment ; (12): 67-72, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1007231

RESUMO

Fanconi anemia (FA) is an inheritable disorder that presents with bone marrow failure, developmental anomalies, and an increased susceptibility to cancer. The etiology of this condition stems from a genetic mutation that disrupts the proper repair of interstrand DNA cross-links (ICLs). The resultant dysregulation of the DNA damage response mechanism can induce genomic instability, thereby elevating the mutation rates and the likelihood of developing cancer. The FA pathway assumes a pivotal role in safeguarding genome stability through its involvement in the repair of DNA cross-links and the maintenance of overall genomic integrity. A mutation in the germ line of any of the genes responsible for encoding the FA protein results in the development of FA. The prevalence of aberrant FA gene expression in somatic cancer, coupled with the identification of a connection between FA pathway activation and resistance to chemotherapy, has solidified the correlation between the FA pathway and cancer. Consequently, targeted therapies that exploit FA pathway gene abnormalities are being progressively developed and implemented. This review critically examines the involvement of the FA protein in the repair of ICLs, the regulation of the FA signaling network, and its implications in cancer pathogenesis and prognosis. Additionally, it explores the potential utility of small-molecule inhibitors that target the FA pathway.

10.
Chinese Journal of Biologicals ; (12): 99-105, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006210

RESUMO

@#Vaccines with novel adjuvants have been listed abroad,while in China,except for aluminum adjuvants widely used in vaccine research and production,few other novel adjuvants have been successfully listed. This paper briefly summarized the source,development history,research progress on biological activity and immune mechanism as well as safety evaluation of the novel BC adjuvant system with independent intellectual property right which has been applied to the vaccine in clinical research stage,so as to provide theoretical support for selection of the adjuvant in the development of novel vaccine.

11.
Acta Pharmaceutica Sinica ; (12): 243-252, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005444

RESUMO

Platycodonis Radix is the dry root of Platycodon grandiflorum of Campanulaceae, which has a variety of pharmacological effects and is a commonly used bulk Chinese medicine. In this study, the chloroplast genome sequences of six P. grandiflorum from different producing areas has been sequenced with Illumina HiSeq X Ten platform. The specific DNA barcodes were screened, and the germplasm resources and genetic diversity were analyzed according to the specific barcodes. The total length of the chloroplast genome of 6 P. grandiflorum samples was 172 260-172 275 bp, and all chloroplast genomes showed a typical circular tetrad structure and encoded 141 genes. The comparative genomics analysis and results of amplification efficiency demonstrated that trnG-UCC and ndhG_ndhF were the potential specific DNA barcodes for identification the germplasm resources of P. grandiflorum. A total of 305 P. grandiflorum samples were collected from 15 production areas in 9 provinces, for which the fragments of trnG-UCC and ndhG_ndhF were amplificated and the sequences were analyzed. The results showed that trnG-UCC and ndhG_ndhF have 5 and 11 mutation sites, respectively, and 5 and 7 haplotypes were identified, respectively. The combined analysis of the two sequences formed 13 haplotypes (named Hap1-Hap13), and Hap4 is the main genotype, followed by Hap1. The unique haplotypes possessed by the three producing areas can be used as DNA molecular tags in this area to distinguish from the germplasm resources of P. grandiflorum from other areas. The haplotype diversity, nucleotide diversity and genetic distance were 0.94, 4.79×10-3 and 0.000 0-0.020 3, respectively, suggesting that the genetic diversity was abundant and intraspecific kinship was relatively close. This study laid a foundation for the identification of P. grandiflorum, the protection and utilization of germplasm resources, and molecular breeding.

12.
Acta Pharmaceutica Sinica ; (12): 764-774, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1016607

RESUMO

italic>Cynanchum wallichii and Cynanchum otophyllum belong to the genus Cynanchum in the family Apocynaceae, and are important medicinal plants. In this study, we sequenced and assembled the chloroplast genomes of C. wallichii and C. otophyllum, and performed a phylogenetic analysis of the structural characteristics of their chloroplast genomes and their phylogenetic positions. The results showed that the chloroplast genomes of both C. wallichii and C. otophyllum had a typical tetrad structure, with 133 genes annotated, and the total GC contents of both were similar. Codon preference analysis showed that the relative synonymous codon usage in the chloroplast genomes of C. wallichii and C. otophyllum differed slightly, but the differences were not significant, and there was a strong A or U preference at the third codon position. In both chloroplast genomes, 91 and 103 simple sequence repeats were detected respectively, and the largest proportion of A/T type repeats. Nucleotide polymorphism analysis showed that the nucleotide diversity of the intergenic sequences in the chloroplast genome of genus Cynanchum were generally higher than those of the common gene sequences. A pair of primers was designed based on the high variation region of the chloroplast genome to identify C. wallichii and C. otophyllum. The phylogenetic analysis showed that the C. wallichii and Cynanchum thesioides were the closest relatives, while the C. otophyllum, Cynanchum bungei and Cynanchum wilfordii formed a stable monophyletic clade within the genus Cynanchum, and the three species were closely related. The comparative analysis of the chloroplast genomic characteristics and phylogeny of C. wallichii and C. otophyllum will provide a theoretical basis for the species identification of the two plants and for the study of genetic diversity and phylogeny of the genus Cynanchum.

13.
Cancer Research on Prevention and Treatment ; (12): 157-162, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1016391

RESUMO

Colorectal cancer (CRC) is one of the most common malignant tumors recorded worldwide. This condition has high morbidity and mortality and seriously endangers people's health. Traditional diagnostic models fail to meet people's current needs for real-time monitoring of tumors. Compared with traditional detection methods, ctDNA detection is not only noninvasive but can also attain real-time detection of comprehensive genomic information of tumors. The advancement of detection technology has gradually highlighted the potential of ctDNA detection in the clinical treatment of CRC. This article reviews the advancements on the clinical application of ctDNA in early screening, minimal residual disease detection, and guidance on individualized treatment of CRC patients.

14.
Journal of Environmental and Occupational Medicine ; (12): 323-329, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013441

RESUMO

Background The active metabolite of benzo[a]pyrene (BaP), 7,8-dihydroxy-9,10-epoxybenzo[a]pyrene (BPDE), can form adducts with DNA, but the spectrum of BPDE-DNA adducts is unclear. Objective To identify the distribution of BPDE adduct sites and associated genes at the whole-genome level by chromatin immunoprecipitation followed by sequencing (ChIP-Seq), and serve as a basis for further exploring the toxicological mechanisms of BaP. Methods Human bronchial epithelial-like cells (16HBE) were cultured to the fourth generation inthe logarithmic growth phase. Cells were harvested and added to chromatin immunoprecipitation lysis buffer. The lysate was divided into experimental and control groups. The experimental group received a final concentration of 20 μmol·L−1 BPDE solution, while the control group received an equivalent volume of dimethyl sulfoxide solution. The cells were then incubated at 37 °C for 24 h. Chromatin fragments of 100-500 bp were obtained through sonication. BPDE-specific antibody (anti-BPDE 8E11) was used to enrich DNA fragments with BPDE adducts. High-throughput sequencing was conducted to detect BPDE adduct sites. The top 1000 peak sequences were subjected to motif analysis using MEME and DREME software. BPDE adduct target genes at the whole-genome level were annotated, and Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of BPDE adduct target genes were conducted using bioinformatics techniques. Results The high-throughput sequencing detected a total of 842 BPDE binding sites, distributed across various chromosomes. BPDE covalently bound to both coding and non-coding regions of genes, with 73.9% binding sites located in intergenic regions, 19.6% in intronic regions, and smaller proportions in upstream 2 kilobase, exonic, downstream 2 kilobase, and 5' untranslated regions. Regarding the top 1000 peak sequences, four reliable motifs were identified, revealing that sites rich in adenine (A) and guanine (G) were prone to binding. Through the enrichment analysis of binding sites, a total of 199 BPDE-adduct target genes were identified, with the majority located on chromosomes 1, 5, 7, 12, 17, and X. The GO analysis indicated that these target genes were mainly enriched in nucleic acid and protein binding, participating in the regulation of catalytic activity, transport activity, translation elongation factor activity, and playing important roles in cell division, differentiation, motility, substance transport, and information transfer. The KEGG analysis revealed that these target genes were primarily enriched in pathways related to cardiovascular diseases, cancer, and immune-inflammatory responses. Conclusion Using ChIP-Seq, 199 BPDE adduct target genes at genome-wide level are identified, impacting biological functions such as cell division, differentiation, motility, substance transport, and information transfer. These genes are closely associated with cardiovascular diseases, tumors, and immune-inflammatory responses.

15.
Chinese Journal of Biologicals ; (12): 316-321, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013395

RESUMO

@#Objective To prepare a national reference standard for the quantification of HEK293 cell DNA content,so as to provide a support for the determination of residual DNA in HEK293 cells in the industry.Methods HEK293 cell DNA prepared using Genomic-tip 500/G and genomic DNA purification reagents was used as source materials,and the purity and content were assessed using ultraviolet spectrophotometry and agarose gel electrophoresis.After dilution to approximately 100 ng/μL,the DNA was aliquoted at 160 μL/tube.Five different laboratories were organized for collaborative calibration by using ultraviolet spectrophotometry, and the stability and applicability were evaluated.Results The HEK293 cell DNA national reference standard exhibited A_(260)/A_(280) ratios between 1.8 and 2.0 and displayed a single band on electrophoresis,meeting the specified criteria.Collaborative calibration across five laboratories yielded 78 valid data points with an average content of 104.8 ng/μL,a relative standard deviation(RSD) of 4.2%.The 95% confidence interval for the mean was 103.8—105.8 ng/μL,and the 95% reference range for single measurements was 96.0—113.6 ng/μL.The average confidence limit rate was 1.0%,and the recommended storage condition was-80 ℃.Applicability studies were conducted using two different models of fluorescence quantitative PCR instruments.The reference standard exhibited good applicability within the range of 0.3—3 000 pg/reaction,with amplification efficiencies of 101% and 95%,and R~2 values of 0.999 2 and 0.999 5 for the standard curves,respectively.Conclusion This batch of HEK293 cell DNA national reference standard meets all required specifications and can be utilized as a national reference standard for fluorescence quantitative PCR detection,with a certified content of 104.8 ng/μL,assigned batch number 270039-202301.

16.
Chinese Journal of Radiological Health ; (6): 13-20, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1012764

RESUMO

Objective To investigate the mechanism of fractionated low-dose ionizing radiation (LDIR) in the induction of EA.hy926 cell senescence. Methods EA.hy926 cells were irradiated with X-ray at 0, 50, 100, and 200 mGy × 4, respectively, and cultured for 24, 48, and 72 h. Several indicators were measured, including the levels of cellular senescence-associated β-galactosidase (SA-β-gal) staining, mRNA levels of senescence-associated cell cycle protein-dependent kinase inhibitor genes CDKN1A and CDKN2A, reactive oxygen species (ROS), total antioxidant capacity (T-AOC), and phosphorylated H2A histone family member X (γ-H2AX). Results After 4 fractionated LDIR, compared with the control group, the treatment groups showed increased nucleus area, blurred cell edge, and increased SA-β-gal positive area (P < 0.05) at 24, 48 and 72 h. After 4 fractionated LDIR, the mRNA level of CDKN1A increased in the 100 and 200 mGy × 4 groups at 24 and 48 h (P < 0.05), and CDKN2A mRNA level increased in the 100 and 200 mGy × 4 groups at 48 and 72 h (P < 0.05). The fluorescence intensity of ROS increased in treatment groups at 24, 48, and 72 h after 4 fractionated LDIR (P < 0.05). After 4 fractionated LDIR, the T-AOC level increased in the 100 and 200 mGy × 4 groups at 24 h (P < 0.05), and T-AOC level increased in all treatment groups at 48 and 72 h (P < 0.05). After 4 fractionated LDIR, γ-H2AX fluorescence intensity increased in all treatment groups at 24 h (P < 0.05), and the fluorescence intensity increased in the 100 and 200 mGy × 4 groups at 48 and 72 h (P < 0.05). Conclusion Fractionated LDIR can induce cellular senescence in EA.hy926 cells by impacting the cellular oxidation-antioxidation and oxidative damage levels, and the effects were relatively evident at 100 and 200 mGy.

17.
Braz. j. biol ; 842024.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469373

RESUMO

Abstract Among Bemisia tabaci species, the invasive MEAM1 and MED species are key agricultural pests for many crops. In Brazil, most part of B. tabaci population outbreaks were associated with MEAM1, which, since 1990s quickly spread across the entire country. Later in 2014, the MED was identified in Brazil, initially more restricted to greenhouses, but suddenly reaching new areas in the South and Southeast open regions. Thus, our objective was to investigate the geographical distribution of MEAM1 and MED on open field crops in Brazil. MEAM1 is still the predominant species on open field crops such as soybean, cotton, and tomato. The sequencing of a cytochrome c oxidase subunit I (COI) gene fragment revealed a single haplotype of MEAM1, suggesting the establishment of a single MEAM1 strain in the country. The haplotypes found for MEAM1 and MED are genetically related to the globally dispersed strains, Jap1 and Mch1, respectively. Continuous monitoring of B. tabaci species is crucial because landscape alterations, climatic changes, and pest management methods may shift the B. tabaci species distribution and dominance in Brazilian crop areas.


Resumo Dentre as espécies de Bemisia tabaci, as espécies invasoras MEAM1 e MED se destacam como pragas de grande importância para várias culturas. No Brasil, a maior parte dos surtos populacionais de mosca-branca são associados a presença da espécie MEAM1, que a partir 1990 se espalhou por todo o país. Por outro lado, em 2014 a espécie MED foi identificada no Brasil, inicialmente restrita a casas de vegetação, mas rapidamente se difundindo em novas áreas nas regiões Sul e Sudeste do Brasil. Assim, nosso objetivo foi investigar a distribuição geográfica das espécies MEAM1 e MED em grandes culturas no Brasil. A espécie MEAM1 continua sendo predominante nas monoculturas como algodão, soja e tomate. O sequenciamento de um fragmento do gene citocromo c oxidase subunidade I (COI) revelou a presença de um haplótipo para MEAM1, sugerindo o estabelecimento de apenas uma linhagem no país. Os haplótipos encontrados para MEAM1 e MED são geneticamente relacionados as linhagens globalmente dispersas Jap1 e Mch1, respectivamente. O monitoramento contínuo das espécies de B. tabaci é crucial pois as mudanças na paisagem, mudanças climáticas e métodos de manejo das pragas podem alterar a dominância e a distribuição dessas espécies nas áreas agrícolas do Brasil.

18.
Acta Pharmaceutica Sinica B ; (6): 492-516, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1011258

RESUMO

DNA-encoded chemical library (DEL) links the power of amplifiable genetics and the non-self-replicating chemical phenotypes, generating a diverse chemical world. In analogy with the biological world, the DEL world can evolve by using a chemical central dogma, wherein DNA replicates using the PCR reactions to amplify the genetic codes, DNA sequencing transcripts the genetic information, and DNA-compatible synthesis translates into chemical phenotypes. Importantly, DNA-compatible synthesis is the key to expanding the DEL chemical space. Besides, the evolution-driven selection system pushes the chemicals to evolve under the selective pressure, i.e., desired selection strategies. In this perspective, we summarized recent advances in expanding DEL synthetic toolbox and panning strategies, which will shed light on the drug discovery harnessing in vitro evolution of chemicals via DEL.

19.
Chinese Herbal Medicines ; (4): 143-150, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1010757

RESUMO

OBJECTIVE@#Angelicae Sinensis Radix (ASR, Danggui in Chinese), Cistanches Herba (CH, Roucongrong in Chinese), Ginseng Radix et Rhizoma (PG, Renshen in Chinese), and Panacis Quinquefolii Radix (PQ, Xiyangshen in Chinese), widely used as medicine and dietary supplement around the world, are susceptible to fungal and mycotoxin contamination. In this study, we aim to analyze their fungal community by DNA metabarcoding.@*METHODS@#A total of 12 root samples were collected from three main production areas in China. The samples were divided into four groups based on herb species, including ASR, CH, PG, and PQ groups. The fungal community on the surface of four root groups was investigated through DNA metabarcoding via targeting the internal transcribed spacer 2 region (ITS2).@*RESULTS@#All the 12 samples were detected with fungal contamination. Rhizopus (13.04%-74.03%), Aspergillus (1.76%-23.92%), and Fusarium (0.26%-15.27%) were the predominant genera. Ten important fungi were identified at the species level, including two potential toxigenic fungi (Penicillium citrinum and P. oxalicum) and eight human pathogenic fungi (Alternaria infectoria, Candida sake, Hyphopichia burtonii, Malassezia globosa, M. restricta, Rhizopus arrhizus, Rhodotorula mucilaginosa, and Ochroconis tshawytschae). Fungal community in ASR and CH groups was significantly different from other groups, while fungal community in PG and PQ groups was relatively similar.@*CONCLUSION@#DNA metabarcoding revealed the fungal community in four important root herbs. This study provided an important reference for preventing root herbs against fungal and mycotoxin contamination.

20.
Braz. j. biol ; 84: e256949, 2024. tab, mapas, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1360214

RESUMO

Among Bemisia tabaci species, the invasive MEAM1 and MED species are key agricultural pests for many crops. In Brazil, most part of B. tabaci population outbreaks were associated with MEAM1, which, since 1990s quickly spread across the entire country. Later in 2014, the MED was identified in Brazil, initially more restricted to greenhouses, but suddenly reaching new areas in the South and Southeast open regions. Thus, our objective was to investigate the geographical distribution of MEAM1 and MED on open field crops in Brazil. MEAM1 is still the predominant species on open field crops such as soybean, cotton, and tomato. The sequencing of a cytochrome c oxidase subunit I (COI) gene fragment revealed a single haplotype of MEAM1, suggesting the establishment of a single MEAM1 strain in the country. The haplotypes found for MEAM1 and MED are genetically related to the globally dispersed strains, Jap1 and Mch1, respectively. Continuous monitoring of B. tabaci species is crucial because landscape alterations, climatic changes, and pest management methods may shift the B. tabaci species distribution and dominance in Brazilian crop areas.


Dentre as espécies de Bemisia tabaci, as espécies invasoras MEAM1 e MED se destacam como pragas de grande importância para várias culturas. No Brasil, a maior parte dos surtos populacionais de mosca-branca são associados a presença da espécie MEAM1, que a partir 1990 se espalhou por todo o país. Por outro lado, em 2014 a espécie MED foi identificada no Brasil, inicialmente restrita a casas de vegetação, mas rapidamente se difundindo em novas áreas nas regiões Sul e Sudeste do Brasil. Assim, nosso objetivo foi investigar a distribuição geográfica das espécies MEAM1 e MED em grandes culturas no Brasil. A espécie MEAM1 continua sendo predominante nas monoculturas como algodão, soja e tomate. O sequenciamento de um fragmento do gene citocromo c oxidase subunidade I (COI) revelou a presença de um haplótipo para MEAM1, sugerindo o estabelecimento de apenas uma linhagem no país. Os haplótipos encontrados para MEAM1 e MED são geneticamente relacionados as linhagens globalmente dispersas Jap1 e Mch1, respectivamente. O monitoramento contínuo das espécies de B. tabaci é crucial pois as mudanças na paisagem, mudanças climáticas e métodos de manejo das pragas podem alterar a dominância e a distribuição dessas espécies nas áreas agrícolas do Brasil.


Assuntos
Animais , Controle de Pragas , Mapeamento Cromossômico , Pragas da Agricultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA