Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Zhejiang University. Science. B ; (12): 811-822, 2020.
Artigo em Inglês | WPRIM | ID: wpr-1010559

RESUMO

Pepino mosaic virus (PepMV) causes severe disease in tomato and other Solanaceous crops around globe. To effectively study and manage this viral disease, researchers need new, sensitive, and high-throughput approaches for viral detection. In this study, we purified PepMV particles from the infected Nicotiana benthamiana plants and used virions to immunize BALB/c mice to prepare hybridomas secreting anti-PepMV monoclonal antibodies (mAbs). A panel of highly specific and sensitive murine mAbs (15B2, 8H6, 23D11, 20D9, 3A6, and 8E3) could be produced through cell fusion, antibody selection, and cell cloning. Using the mAbs as the detection antibodies, we established double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), Dot-ELISA, and Tissue print-ELISA for detecting PepMV infection in tomato plants. Resulting data on sensitivity analysis assays showed that both DAS-ELISA and Dot-ELISA can efficiently monitor the virus in PepMV-infected tissue crude extracts when diluted at 1:1 310 720 and 1:20 480 (weight/volume ratio (w/v), g/mL), respectively. Among the three methods developed, the Tissue print-ELISA was found to be the most practical detection technique. Survey results from field samples by the established serological approaches were verified by reverse transcription polymerase chain reaction (RT-PCR) and DNA sequencing, demonstrating all three serological methods are reliable and effective for monitoring PepMV. Anti-PepMV mAbs and the newly developed DAS-ELISA, Dot-ELISA, and Tissue print-ELISA can benefit PepMV detection and field epidemiological study, and management of this viral disease, which is already widespread in tomato plants in Yunnan Province of China.


Assuntos
Animais , Feminino , Camundongos , Anticorpos Monoclonais/imunologia , China , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática/métodos , Hibridomas , Solanum lycopersicum/virologia , Camundongos Endogâmicos BALB C , Doenças das Plantas/virologia , Potexvirus/metabolismo , Sensibilidade e Especificidade , Nicotiana
2.
Journal of Zhejiang University. Science. B ; (12): 811-822, 2020.
Artigo em Inglês | WPRIM | ID: wpr-846933

RESUMO

Pepino mosaic virus (PepMV) causes severe disease in tomato and other Solanaceous crops around globe. To effectively study and manage this viral disease, researchers need new, sensitive, and high-throughput approaches for viral detection. In this study, we purified PepMV particles from the infected Nicotiana benthamiana plants and used virions to immunize BALB/c mice to prepare hybridomas secreting anti-PepMV monoclonal antibodies (mAbs). A panel of highly specific and sensitive murine mAbs (15B2, 8H6, 23D11, 20D9, 3A6, and 8E3) could be produced through cell fusion, antibody selection, and cell cloning. Using the mAbs as the detection antibodies, we established double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), Dot-ELISA, and Tissue print-ELISA for detecting PepMV infection in tomato plants. Resulting data on sensitivity analysis assays showed that both DAS-ELISA and Dot-ELISA can efficiently monitor the virus in PepMV-infected tissue crude extracts when diluted at 1:1310720 and 1:20480 (weight/volume ratio (w/v), g/mL), respectively. Among the three methods developed, the Tissue print-ELISA was found to be the most practical detection technique. Survey results from field samples by the established serological approaches were verified by reverse transcription polymerase chain reaction (RT-PCR) and DNA sequencing, demonstrating all three serological methods are reliable and effective for monitoring PepMV. Anti-PepMV mAbs and the newly developed DAS-ELISA, Dot-ELISA, and Tissue print-ELISA can benefit PepMV detection and field epidemiological study, and management of this viral disease, which is already widespread in tomato plants in Yunnan Province of China.

3.
Journal of Veterinary Science ; : 95-98, 2013.
Artigo em Inglês | WPRIM | ID: wpr-219412

RESUMO

There is an ongoing need for standardized, easily renewable immunoreagents for detecting African horsesickness virus (AHSV). Two phage displayed single-chain variable fragment (scFv) antibodies, selected from a semi-synthetic chicken antibody library, were used to develop double antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) to detect AHSV. In the DAS-ELISAs, the scFv previously selected with directly immobilized AHSV-3 functioned as a serotype-specific reagent that recognized only AHSV-3. In contrast, the one selected with AHSV-8 captured by IgG against AHSV-3 recognized all nine AHSV serotypes but not the Bryanston strain of equine encephalosis virus. Serving as evidence for its serogroup-specificity. These two scFvs can help to rapidly confirm the presence of AHSV while additional serotype-specific scFvs may simplify AHSV serotyping.


Assuntos
Animais , Vírus da Doença Equina Africana/isolamento & purificação , Anticorpos Imobilizados , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Galinhas , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina G , Biblioteca de Peptídeos , Testes Sorológicos/métodos , Sorotipagem , Anticorpos de Cadeia Única/imunologia , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA