Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
China Journal of Chinese Materia Medica ; (24): 752-761, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970545

RESUMO

This study explores the effect of apigenin(APG), oxymatrine(OMT), and APG+OMT on the proliferation of non-small cell lung cancer cell lines and the underlying mechanisms. Cell counting kit-8(CCK-8) assay was used to detect the vitality of A549 and NCI-H1975 cells, and colony formation assay to evaluate the colony formation ability of the cells. EdU assay was employed to examine the proliferation of NCI-H1975 cells. RT-qPCR and Western blot were performed to detect the mRNA and protein expression of PLOD2. Molecular docking was carried out to explore the direct action ability and action sites between APG/OMT and PLOD2/EGFR. Western blot was used to study the expression of related proteins in EGFR pathway. The viability of A549 and NCI-H1975 cells was inhibited by APG and APG+OMT at 20, 40, and 80 μmol·L~(-1) in a dose-dependent manner. The colony formation ability of NCI-H1975 cells was significantly suppressed by APG and APG+OMT. The mRNA and protein expression of PLOD2 was significantly inhibited by APG and APG+OMT. In addition, APG and OMT had strong binding activity with PLOD2 and EGFR. In APG and APG+OMT groups, the expression of EGFR and proteins in its downstream signaling pathways was significantly down-regulated. It is concluded that APG in combination with OMT could inhibit non-small lung cancer, and the mechanism may be related to EGFR and its downstream signaling pathways. This study lays a new theoretical basis for the clinical treatment of non-small cell lung cancer with APG in combination with OMT and provides a reference for further research on the anti-tumor mechanism of APG in combination with OMT.


Assuntos
Humanos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Apigenina , Simulação de Acoplamento Molecular , Alcaloides , Quinolizinas , RNA Mensageiro , Receptores ErbB
2.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 351-363, 2021.
Artigo em Inglês | WPRIM | ID: wpr-881076

RESUMO

Digestive system cancers, including liver, gastric, colon, esophageal and pancreatic cancers, are the leading cause of cancers with high morbidity and mortality, and the question of their clinical treatment is still open. Previous studies have indicated that Ziyuglycoside II (ZYG II), the major bioactive ingredient extract from Sanguisorba officinalis L., significantly inhibits the growth of various cancer cells. However, the selective anti-tumor effects of ZYG II against digestive system cancers are not systemically investigated. In this study, we reported the anti-cancer effect of ZYG II on esophageal cancer cells (OE21), cholangiocarcinoma cells (HuCCT1), gastric cancer cells (BGC-823), liver cancer cells (HepG2), human colonic cancer cells (HCT116), and pancreatic cancer cells (PANC-1). We also found that ZYG II induced cell cycle arrest, oxidative stress and mitochondrial apoptosis. Network pharmacology analysis suggested that UBC, EGFR and IKBKG are predicted targets of ZYG II. EGFR signaling was suggested as the critical pathway underlying the anti-cancer effects of ZYG II and both docking simulation and western blot analysis demonstrated that ZYG II was a potential EGFR inhibitor. Furthermore, our results showed synergistic inhibitory effects of ZYG II and chemotherapy 5-FU on the growth of cancer cells. In summary, ZYG II are effective anti-tumor agents against digestive cancers. Further systemic evaluation of the anti-cancer activities in vitro and in vivo and characterization of underlying mechanism will promote the development of novel supplementary therapeutic strategies based on ZYG II for the treatment of digestive system cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA