Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. oral sci ; 20: e214073, jan.-dez. 2021. ilus
Artigo em Inglês | BBO, LILACS | ID: biblio-1282556

RESUMO

Aim: this study aimed to compare the sealing ability of two types of commercially available calcium silicate bioceramic based root canal sealers and a resin based root canal sealer. Methods: Twenty one single-rooted teeth were used, samples (n= 21) were randomly divided into three groups according to the sealer used (group A; ADSEAL, group B; Wellroot, group C; Ceraseal). Roots were then cleaved longitudinally in the labiolingual direction; all samples were then sectioned at three, six, and nine mm from the root tip. The penetration of sealers into the dentinal tubules was examined at 1000x with a scanning electron microscope. Data were tested for normality using Shapiro Wilk test. ANOVA test was used for analyzing normally distributed data followed by Bonferroni post hoc test for pair-wise comparison. Significance level p≤0.001. Results: groups B and C showed better sealing ability than group A in all the three sections. The coronal section showed higher sealing ability than the middle section followed by the apical section in the three tested groups. Conclusion: it can be concluded that both calcium silicate-based sealers had better sealing ability and higher bond strength than the resin epoxy- based sealer


Assuntos
Materiais Restauradores do Canal Radicular , Silicatos , Compostos de Cálcio , Resinas Epóxi , Tomografia com Microscopia Eletrônica
2.
Braz. j. oral sci ; 19: e206155, jan.-dez. 2020. ilus
Artigo em Inglês | BBO, LILACS | ID: biblio-1116428

RESUMO

Aim: The roughness and micromorphology of various surface treatments in aged metal-free crowns and the bond strength of these crowns repaired with composite resin (CR) was evaluated in vitro. Methods: A CR core build-up was confectioned in 60 premolars and prepared for metal-free crowns. Prepared teeth were molded with the addition of silicone, and the laboratory ceromer/fiber-reinforced crowns (SR Adoro/Fibrex Lab) were fabricated. Subsequently, the crowns were cemented and artificially aged in a mechanical fatigue device (1.2 X 106 cycles), then divided into 4 groups (n = 15) according to the surface treatment: 1) phosphoric acid etching (PA); 2) PA + silane application; 3) roughening with a diamond bur + PA; and 4) sandblasting with Al2O3 + PA. After the treatments, the crowns (n = 2) were qualitatively analyzed by scanning electron microscope (SEM) and surface roughness (n = 5) was analyzed before and after the surface treatment (Ra parameter). The remaining crowns (n = 8) received standard repair with an adhesive system (Tetric N-Bond) and a nanohybrid CR (Tetric N-Ceram), and the microshear bond strength (SBS) test was performed (0.5 mm/min). Roughness and SBS data were analyzed by one- and two-way ANOVA, respectively, as well as Tukey's post-test (α = 0.05). Results: Sandblasting with Al2O3 + PA resulted in the highest final roughness and SBS values. The lowest results were observed in the PA group, whereas the silane and diamond bur groups showed intermediate values. Conclusion: It may be concluded that indirect ceromer crowns sandblasted with aluminum oxide prior to PA etching promote increased roughness surface and bond strength values


Assuntos
Propriedades de Superfície , Cerâmica , Resinas Compostas , Resistência ao Cisalhamento , Tomografia com Microscopia Eletrônica
3.
Braz. oral res. (Online) ; 32: e43, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889490

RESUMO

Abstract To investigate how the hydrofluoric acid (HF) concentrations applied to a lithium disilicate glass-ceramic (EMX) affects the surface morphology and microtensile bond strength (μTBS) of ceramics to dentin, using light-cured resin cements with or without UDMA. Sixty-three EMX square ceramic blocks were etched for 20 seconds using different HF concentrations (1%, 5% and 10%) and luted to dentin using two types of resin cement combinations: BisGMA/TEGDMA and BisGMA/TEGDMA/UDMA (n = 10). Each bonded EMX-dentin block was sectioned to obtain 1 mm2 sticks for μTBS evaluation. Half of the sticks were tested after 24 hours and the other half was assessed after 6 months of water storage. Data were statistically assessed using split-plot three-way ANOVA and multiple comparisons were performed using the Tukey's post hoc test (α = 0.05). One EMX sample from each HF concentration was analyzed using field-emission scanning electron microscope (FE-SEM) to characterize the etching pattern. According to the FE-SEM images, increasing the concentration of HF from 1 to 5 and then to 10% led to increased removal of glassy matrix and greater exposure of lithium disilicate crystals. The 10% HF concentration yielded higher μTBS when compared to 1% for BisGMA/TEGDMA formulation (p < 0.05); whereas HF 1% and 5% showed similar μTBS values when compared to 10% HF for BisGMA/TEGDMA/UDMA resin matrix (p > 0.05) at both storage times. Water aging decreased the μTBS values (p < 0.05), except when 10% HF was associated with BisGMA/TEGDMA resin cement. Resin cement formulation and hydrofluoric acid concentrations can interfere with the immediate and long-term glass-ceramic bond strength to dentin.


Assuntos
Cerâmica/química , Colagem Dentária/métodos , Cimentos de Resina/química , Porcelana Dentária/química , Ácido Fluorídrico/química , Propriedades de Superfície , Resistência à Tração , Teste de Materiais , Microscopia Eletrônica de Varredura , Análise do Estresse Dentário
4.
Journal of Periodontal & Implant Science ; : 219-230, 2017.
Artigo em Inglês | WPRIM | ID: wpr-31824

RESUMO

PURPOSE: The purpose of this study was to compare the characteristics of single- and dual-species in vitro oral biofilms made by static and dynamic methods. METHODS: Hydroxyapatite (HA) disks, 12.7 mm in diameter and 3 mm thick, were coated with processed saliva for 4 hours. The disks were divided into a static method group and a dynamic method group. The disks treated with a static method were cultured in 12-well plates, and the disks in the dynamic method group were cultured in a Center for Disease Control and Prevention (CDC) biofilm reactor for 72 hours. In the single- and dual-species biofilms, Fusobacterium nucleatum and Porphyromonas gingivalis were used, and the amount of adhering bacteria, proportions of species, and bacterial reduction of chlorhexidine were examined. Bacterial adhesion was examined with scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). RESULTS: Compared with the biofilms made using the static method, the biofilms made using the dynamic method had significantly lower amounts of adhering and looser bacterial accumulation in SEM and CLSM images. The proportion of P. gingivalis was higher in the dynamic method group than in the static method group; however, the difference was not statistically significant. Furthermore, the biofilm thickness and bacterial reduction by chlorhexidine showed no significant differences between the 2 methods. CONCLUSIONS: When used to reproduce periodontal biofilms composed of F. nucleatum and P. gingivalis, the dynamic method (CDC biofilm reactor) formed looser biofilms containing fewer bacteria than the well plate. However, this difference did not influence the thickness of the biofilms or the activity of chlorhexidine. Therefore, both methods are useful for mimicking periodontitis-associated oral biofilms.


Assuntos
Bactérias , Aderência Bacteriana , Biofilmes , Clorexidina , Durapatita , Tomografia com Microscopia Eletrônica , Fusobacterium nucleatum , Técnicas In Vitro , Métodos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Periodontite , Porphyromonas gingivalis , Saliva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA