Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. arch. biol. technol ; 65: e22210711, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1364439

RESUMO

Abstract: Microgrids (MD) is a new technology to improve efficiency, resilience, and reliability in the electricity sector. MD are most likely to have a clean energy generation, but the increase of microgrids with this kind of generation brings new challenges for energy management (EMS), especially concerning load uncertainties and variation of energy generation. In this context, this study has the main objective to propose a method of how to attend this matter, verifying the difference between the day before and real-time. The EMS proposed analyses the MD in real-time, calculating the deviation between dispatched and what was predicted to happen in the operation point in a three-dimensional analysis approach, considering renewable energy generation, battery State of Charge (SOC) and load curve. The system categorized the deviation in three possible quantities (small, medium, or high) and it acts accordingly. For the Next Operation Point predictor are used an artificial neural network (ANN) methodology. For the Decision Support System, it's used a fuzzy logic system to adjust the next operation point, and it uses a mixed-integer linear programming (MILP) approach when the deviation is too high, and the dispatched operation is unfeasible. Simulations with real data and information of a pilot project of MD are carried out to test and validate the proposed method. Results show that the methodology used to attend the matters of uncertainties and variation of energy generation. A reduction of operational cost is observed in the simulations.

2.
Braz. arch. biol. technol ; 62(spe): e19190017, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1055444

RESUMO

Abstract This paper presents the development of a conceptual map regarding energy management applied to industry. The energy issue is currently of great relevance, especially for the so-called energy-intensive industries related to high energy consumption and their associated environmental impacts. The present research is characterized as a basic, exploratory approach justified by the need to build knowledge on the subject of energy management in industry. The methodology provides for the use of a computational tool called CMap Tools, which assists in the graphic representation of the proposed conceptual map. The conceptual map based on the ISO 50001 standard and on successful energy management practices described in the scientific literature is directed toward a process design covered by the managerial discipline called Business Process Management. The conceptual map is intended to clarify the relationships that are established between the intra-organizational and main external stakeholders involved in an energy management system. Owing to the way internal areas and external organizations relate, the representation structure using a "Spider" is the most appropriate. The work developed presents an energy management system for an energy-intensive industry in a clear (conceptually and visually), orderly, unified, harmonious, and balanced manner indicating the distribution of its elements, and serves as an initial step in the creation of an ontology for this area of knowledge.


Assuntos
Centrais Elétricas/organização & administração , Indústrias , Meio Ambiente , Consumo de Energia
3.
Braz. arch. biol. technol ; 61(spe): e18000160, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-974122

RESUMO

ABSTRACT Companies have needs and experience new opportunities to build their structure and align organizational process to achieve energy management with higher priority facing economic and environmental issues. The objective of this paper is to present the design and modeling of the Energy Management System (EnMS) in energy-intensive industries in an enterprise engineering approach, according to the management discipline called Business Process Management (BPM). The design of the process is based on the ISO 50001 standard and in good practices cited in the scientific literature. The methodology is characterized as basic, experimental, qualitative, and oriented according to the BPM development cycle. The process design created in the "should be" format presents a framework based on the Plan, Do, Check and Act (PDCA) cycle. The process is described in a necessary and sufficient way, arranging activities, actors and roles to establish an energy management process. The key process model of the energy review was developed in the Business Process Model and Notation (BPMN). The design and modeling allows to: analyze the EnMS as a process for understanding the activities; assist decision making; automate processes; enable collaboration; allow alignment of the process with the strategy; support the change and assisting with the evaluation of the organizational potential to implement the EnMS.


Assuntos
Eletricidade , Abastecimento de Energia/métodos , Indústrias , Comércio/organização & administração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA