Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Medical Biomechanics ; (6): 27-31, 2017.
Artigo em Chinês | WPRIM | ID: wpr-515103

RESUMO

Objective To determine the hyperelastic parameters of shear modulus (μ) and curvature parameter (α) of extraocular muscles (EOMs) in Ogden hyperelastic model,so as to provide theoretical basis for clinical EOM surgery by numerical modeling.Methods The passive behavior of fox EOMs in vitro was determined by the uniaxial tensile test,and the hyperelastic analysis was conducted using the first-order Ogden model and ABAQUS software.Results The experimental result showed that the passive behavior of fox EOMs was nonlinear.The corresponding hyperelastic parameters μ =(6.57 ± 3.76) kPa and oα =8.16 ± 1.63 were obtained.When the strain of EOMs was larger than 6%,there were no statistical differences between the experimental result and the calculation result of the first-order Ogden hyperelastic model (P > 0.05).Both the calculation result and the simulation result well fitted to the experimental result.Conclusions The hyperelastic parameters identified in this study can be used as the input for the corresponding numerical modeling of fox EOMs.

2.
Journal of Medical Biomechanics ; (6): 27-31, 2017.
Artigo em Chinês | WPRIM | ID: wpr-737299

RESUMO

Objective To determine the hyperelastic parameters of shear modulus (μ) and curvature parameter (α) of extraocular muscles (EOMs) in Ogden hyperelastic model,so as to provide theoretical basis for clinical EOM surgery by numerical modeling.Methods The passive behavior of fox EOMs in vitro was determined by the uniaxial tensile test,and the hyperelastic analysis was conducted using the first-order Ogden model and ABAQUS software.Results The experimental result showed that the passive behavior of fox EOMs was nonlinear.The corresponding hyperelastic parameters μ =(6.57 ± 3.76) kPa and oα =8.16 ± 1.63 were obtained.When the strain of EOMs was larger than 6%,there were no statistical differences between the experimental result and the calculation result of the first-order Ogden hyperelastic model (P > 0.05).Both the calculation result and the simulation result well fitted to the experimental result.Conclusions The hyperelastic parameters identified in this study can be used as the input for the corresponding numerical modeling of fox EOMs.

3.
Journal of Medical Biomechanics ; (6): 27-31, 2017.
Artigo em Chinês | WPRIM | ID: wpr-735831

RESUMO

Objective To determine the hyperelastic parameters of shear modulus (μ) and curvature parameter (α) of extraocular muscles (EOMs) in Ogden hyperelastic model,so as to provide theoretical basis for clinical EOM surgery by numerical modeling.Methods The passive behavior of fox EOMs in vitro was determined by the uniaxial tensile test,and the hyperelastic analysis was conducted using the first-order Ogden model and ABAQUS software.Results The experimental result showed that the passive behavior of fox EOMs was nonlinear.The corresponding hyperelastic parameters μ =(6.57 ± 3.76) kPa and oα =8.16 ± 1.63 were obtained.When the strain of EOMs was larger than 6%,there were no statistical differences between the experimental result and the calculation result of the first-order Ogden hyperelastic model (P > 0.05).Both the calculation result and the simulation result well fitted to the experimental result.Conclusions The hyperelastic parameters identified in this study can be used as the input for the corresponding numerical modeling of fox EOMs.

4.
Journal of Medical Biomechanics ; (6): E027-E031, 2017.
Artigo em Chinês | WPRIM | ID: wpr-803806

RESUMO

Objective To determine the hyperelastic parameters shear modulus (μ) and curvature parameter (α) of extraocular muscles (EOMs) in Ogden hyperelastic model, so as to provide theoretical basis for clinical EOM surgery by numerical modeling. Methods The passive behavior of fox EOMs in vitro was determined by the uniaxial tensile test, and the hyperelastic analysis was conducted by the first-order Ogden model and ABAQUS software. Results The experimental result showed that the passive behavior of fox EOMs was nonlinear. The corresponding hyperelastic parameters μ =(6.57±3.76) kPa and α=8.16±1.63 were obtained. When the strain of EOMs was larger than 6%, there were no statistical differences between the experimental result and the calculation result of the first-order Ogden hyperelastic model (P>0.05). Both the calculation result and the simulation result well fitted to the experimental result. Conclusions The hyperelastic parameters identified in this study can be used as the input for the corresponding numerical modeling of fox EOMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA