RESUMO
ObjectiveTo observe the effect of Feiyanning prescription (FYN) on cisplatin (DDP) resistance in non-small cell lung cancer (NSCLC) and explore the underlying mechanism. MethodCell counting kit-8 (CCK-8) assay was used to detect the proliferation of A549 and A549/DDP (DDP-resistant) cells treated by DDP (0, 2.0, 4.0, 6.0, 8.0, 10.0 mg⋅L-1) and the proliferation of A549/DDP cells treated by FYN (0, 100, 200, 300, 400, 500, 600 mg⋅L-1). Based on immunofluorescence staining and Western blot (WB), the expression of epithelial mesenchymal transition (EMT)-related proteins in A549 and A549/DDP groups was observed. A549/DDP cells were classified into control group, FYN group (200 mg⋅L-1), DDP group (6.0 mg⋅L-1), and combination group [FYN (200 mg⋅L-1) + DDP (6.0 mg⋅L-1)] and respectively treated with corresponding drugs. Then, invasion ability of each group was examined by transwell assay, and the expression of EMT-related proteins in each group by WB. Moreover, real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) and immunofluorescence staining were separately applied to detect the mRNA and protein expression of drug resistance-related factors in each group, respectively. ResultCompared with A549 group, A549/DDP group showed high resistance to DDP (P<0.01), low expression of E-cadherin, and high protein expression of Vimentin, N-cadherin, and Snail (P<0.05, P<0.01). As compared with the control group, FYN inhibited the proliferation of A549/DDP cells in a concentration-dependent manner (P<0.01), and the FYN group, DDP group, and combination group demonstrated low invasion ability (P<0.01). In addition, the invasion ability in the combination group was particularly lower than that in the DDP group (P<0.01). The expression of E-cadherin protein was higher and the protein expression of N-cadherin, Vimentin, and Snail was lower in the in FYN group than in the control group (P<0.01). The protein expression of E-cadherin, N-cadherin, and Vimentin was lower and the expression of Snail was higher in the DDP group than in the control group (P<0.05,P<0.01). The protein expression of E-cadherin, N-cadherin, Vimentin, and Snail in the combination group decreased as compared with that in the control group (P<0.01). Compared with the DDP alone, the combination raised the expression of E-cadherin and lowered the protein expression of N-cadherin, Vimentin, and Snail (P<0.01). The protein and mRNA expression of lung resistance-related protein (LRP) and multidrug resistance 1 (MDR1) was lower and the protein and mRNA expression of topoisomerase Ⅱα (TOPO Ⅱα) was higher in the FYN group than in the control group (P<0.01). The protein and mRNA expression of LRP, MDR1, and TOPO Ⅱα was higher in the DDP group than in the control group (P<0.01). The expression of LRP protein and mRNA showed no significant variation, but the protein and mRNA expression of MDR1 and TOPO Ⅱα increased in the combination group compared with those in the control group (P<0.01). Compared with the DDP group, FYN group and combination group showed low protein and mRNA expression of LRP and MDR1 and high protein and mRNA expression of TOPO Ⅱα (P<0.01). Compared with FYN, the combination elevated the protein and mRNA expression of LRP, MDR1, and TOPO Ⅱα (P<0.01). ConclusionFYN prescription can reverse the DDP resistance of NSCLC by modulating EMT.