Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Journal of Environmental and Occupational Medicine ; (12): 62-69, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006458

RESUMO

Background Affected by concentration, composition, and population tolerance of air pollutants, the relationship between air pollutants and population health has regional differences. There is still a research gap in Guiyang. Objective To explore the short-term effects of air pollutant concentrations in low-pollution areas on the outpatient volume of respiratory diseases. Methods Spearman correlation analysis was used to evaluate the correlation between air pollutants, meteorological factors, and respiratory outpatient volume from January 1, 2013 to December 31, 2020 in Guiyang City. A single pollutant distribution lag nonlinear model and a multi-pollutant interaction model were established based on Poisson distribution. A three-dimensional diagram was drawn to display the relationship between air pollutants and respiratory outpatient volume. Quantitative analysis was conducted on the attribution risk and lag effect of air pollutant concentration on outpatient volume of respiratory diseases in Guiyang City. Results The results of the single pollutant model showed that fine particulate matter (PM2.5), nitrogen dioxide (NO2), carbon monoxide (CO), and sulfur dioxide (SO2) elevated the outpatient volume of respiratory diseases. The maximum relative risk (RR) and 95%CI values of PM2.5, NO2,CO, and SO2 appeared on Day 2, 0, 5, and 6, respectively, which were 1.019 (1.015, 1.023), 1.146 (1.122, 1.171), 1.129 (1.116, 1.143), and 1.046(1.040, 1.052), respectively. For every quartile concentration increment of PM2.5, NO2, CO, or SO2, the outpatient volume of respiratory diseases increased by 0.943% (0.111%, 1.782%), 4.050% (3.573%, 4.529%), 0.595% (0.317%, 0.874%), or 0.667% (0.235%, 1.100%), respectively. The maximum RR (95%CI) of O3 was 1.015 (1.007, 1.023) and appeared on Day 0. The results of multi-pollutant model showed that PM2.5, NO2, CO, SO2, and O3 all elevated the outpatient volume of respiratory diseases. The maximum RR values of PM2.5, NO2, CO, SO2 and O3 appeared on Day 14, 0, 5, 7 and 0, respectively, which were 1.027 (1.021, 1.034), 1.213 (1.179, 1.248), 1.059 (1.043, 1.074), 1.016 (1.005, 1.026), and 1.024 (1.015, 1.033), respectively. Compared with the single pollutant model, the RR values of PM2.5, NO2, and O3 on the outpatient volume of respiratory diseases in the multi-pollutant model showed an upward trend, while the RR values of CO and SO2 in the multi-pollutant model showed a downward trend. Conclusion The impact of low concentrations of PM2.5, NO2, CO, and SO2 on human health cannot be ignored.

2.
Journal of Environmental and Occupational Medicine ; (12): 54-61, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006457

RESUMO

Background Polycyclic aromatic hydrocarbons (PAHs), one of the main components of fine particulate matter (PM2.5), have a certain impact on ambient air quality, and long-term exposure to PAHs may pose potential health risks to human beings. Objective To identify the distribution characteristics and sources of PAHs in atmospheric PM2.5 in a district of Taizhou City from 2019 to 2021, and to evaluate the health risks of PAHs to the population in the area through the inhalation pathway. Methods From 2019 to 2021, air PM2.5 sampling was carried out at a state-controlled surveillance point in a district of Taizhou City for 7 consecutive days on the 10th-16th of each month, the sampling time was 24 h·d−1, and the sampling flow rate was 100 L·min−1. PM2.5 mass concentration was calculated by gravimetric method. A total of 16 PAHs were determined by ultrasonic extraction-liquid chromatography. Kruskal-Wallis H test was used to compare the distribution charac teristics of PAHs concentrations by years and seasons, characteristic ratio and principal component analysis (PCA) was used to analyze their sources, and a lifetime carcinogenic risk (ILCR) model was used to assess the health risk of PAHs. Results From 2019 to 2021, the annual average concentrations [M (P25, P75)] of ∑PAHs in atmospheric PM2.5 in the selected district of Taizhou City were 6.52 (2.46, 10.59), 8.52 (4.56, 12.29), and 3.72 (1.51, 7.11) ng·m−3, respectively, and the annual benzo[a]pyrene (BaP) excess rates (national limit: 1 ng·m−3) were 27.38% (23/84), 47.62% (40/84), and 19.04% (16/84), respectively, both presenting 2020> 2019 > 2021 (P<0.001, P<0.05). The ∑PAHs concentration distribution showed a seasonal variation, with the highest value in winter and the lowest value in summer (P<0.05). Among the atmospheric PM2.5 samples, the proportion of 5-ring PAHs was the highest, the proportion of 2-3-ring PAHs was the lowest; the proportion of 2-4-ring PAHs showed a yearly upward trend, and the proportion of 5-6-ring PAHs showed yearly downward trend (P<0.05). The characteristic ratio and PCA results suggested that the sources of sampled PAHs were mainly mixed sources such as dust, fossil fuel (natural gas), coal combustion, industrial emissions, and motor vehicle exhaust emissions. The ILCR (RILCR) of PAHs by inhalation for men, women, and children were 1.83×10−6, 2.35×10−6, and 2.04×10−6, respectively, and the annual average RILCR was 2.07×10−6, all greater than 1×10−6. Conclusion For the sampled time period, the main sources of PAHs pollution in atmospheric PM2.5 in the target district of Taizhou City are dust, fossil fuel (natural gas), coal combustion, industrial emissions, motor vehicle emissions, etc., and PAHs may have a potential carcinogenic risk to local residents.

3.
Journal of Environmental and Occupational Medicine ; (12): 25-33, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006453

RESUMO

Background The impact of atmospheric fine particulate matter (PM2.5) and ozone (O3) on the mortality of circulatory system diseases cannot be ignored. However, whether the interaction between PM2.5 and O3 can affect population health is rarely reported and requires study. Objective To investigate the individual and interactive impacts of atmospheric PM2.5 and O3 on the mortality of circulatory system diseases in the population of Ningxia region. Methods The data of 119647 deaths due to circulatory system diseases, daily average concentrations of atmospheric pollutants, and meteorological data in Ningxia from 2013 to 2020 were retrieved. PM2.5 was divided into low, medium, and high concentrations according to the primary and secondary national limits (35 and 75 μg·m−3) of the Ambient air quality standards. Similarly, O3 was divided into low, medium, and high concentrations according to the national limits (100 and 160 μg·m−3). Using a generalized additive mixed model based on quasi Poisson distribution, the impacts of atmospheric PM2.5 and O3 as well as their interaction on the mortality of circulatory system diseases were analyzed using the population data of Ningxia region. Results During the target period, males and the ≥ 65 year group accounted for larger proportions of deaths due to circulatory system diseases (55.47% and 79.87% respectively). The daily average concentration of PM2.5 (40.25 μg·m−3) exceeded the national primary limit. In the single pollution model, the highest cumulative lag effects for mortality from circulatory system diseases were PM2.5 exposure over previous 1 d (lag01) and O3 exposure for previous 2 d (lag02), and their excess risk (ER) values were 1.03% (95%CI: 0.67%, 1.40%) and 1.02% (95%CI: 0.57%, 1.50%), respectively. The results of concentration stratification analysis showed that the most significant risks of death from circulatory system diseases [ER (95%CI): 1.12% (0.32%, 1.92%) and 0.95% (0.13%, 1.79%) respectively] were found at medium PM2.5 and O3 concentrations. The interaction analysis revealed that under, a synergistic effect on the risk of death from circulatory system diseases was identified (relative excess risk due to interaction=3.08%, attributable proportion of interaction=2.90%, synergy index=1.89) when considering the coexistence of PM2.5 and O3 above the primary limit. As the concentrations of PM2.5 and O3 increased, the synergistic effect increased the risk of death from circulatory system diseases in the general population, men, women, and the ≥ 65 years group. Conclusion Both atmospheric PM2.5 and O3 can increase the risk of death from circulatory system diseases, and the two pollutants have a synergistic effect on the risk of death from circulatory system diseases.

4.
Journal of Environmental and Occupational Medicine ; (12): 294-302, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013437

RESUMO

Background Air pollution has gradually become a major environmental and public health problem faced by countries around the world. Hazy weather not only affects the health of the population, but also poses a threat to social and public safety. China has successively promulgated policies such as the "Ten Articles on Atmosphere" and the Three-year action plan to fight air pollution, aiming to improve ambient air quality. It is clear that the Beijing-Tianjin-Hebei region has accomplished the set targets and improved air quality according to the environmental monitoring data of 2017. Objective To assess air quality improvements through the evaluation of the disease burden due to fine particulate matter (PM2.5) pollution in Shijiazhuang City before and after the air quality improvement from 2014 to 2021, including fatalities and health economic losses attributed to PM2.5 pollution. Methods Data on causes of death, PM2.5 concentrations, the number of permanent residents at the end of the year, gross regional product, and disposable income per capita in urban areas of Shijiazhuang were collected from 2014 to 2021. Total, non-accidental, circulatory, and respiratory deaths due to PM2.5 pollution were estimated by global exposure mortality models (GEMM). Health and economic losses due to selected diseases were calculated by value of statistical life (VOSL). Results During the study period, the average annual concentration of PM2.5 in Shijiazhuang was highest in 2014, and began to decline year by year in 2017, but all exceeded the current national limit of the second level of ambient air quality standards (35 μg·m−3). The total deaths, non-accidental deaths, circulatory disease deaths, and respiratory disease deaths attributed to PM2.5 pollution from 2014 to 2021 were 41326, 40246, 21792, and 5022, respectively; the associated health economic losses were 37.362, 36.369, 19.695, and 4.535 billion yuan, respectively. From the perspective of improved air quality, both the number of attributed deaths and health economic losses had declined in a volatile manner since 2017, with a significant decrease in 2019. If the average annual concentration of PM2.5 reached the second-level limit of China's ambient air quality standard (35 μg·m−3), the total deaths, non-accidental deaths, and deaths from circulatory diseases and respiratory diseases due to PM2.5 pollution would deducted by about 17000, 16000, 9000, and 2000, respectively; the corresponding health and economic losses would decreased by 15.201, 14.761, 7.959, and 1.859 billion yuan, respectively. If the average annual concentration of PM2.5 reached the latest PM2.5 air quality guidelines (5 μg·m−3) proposed by the World Health Organization, the total deaths, non-accidental deaths, circulatory disease deaths, and respiratory disease deaths due to PM2.5 pollution would deducted by 36000, 35000, 19000, and 4000, respectively, and the corresponding health and economic losses would reduced by 32.673, 31.796, 17.211, and 3.969 billion yuan, respectively. Conclusion PM2.5 pollution can lead to severe mortality burden and economic loss. Under the implementation of the State Council's "Ten Articles on Atmosphere" and the Three-year action plan to fight air pollution, Shijiazhuang's PM2.5 concentration and health economic losses have been significantly reduced, and further control of PM2.5 pollution can achieve greater health benefits and economic gains, affirming the positive results of local air pollution prevention work.

5.
Journal of Environmental and Occupational Medicine ; (12): 259-266, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013432

RESUMO

Background Long-term exposure to ambient fine particulate matter (PM2.5) may increase the risk of diabetes, and a healthy diet can effectively control fasting blood glucose levels. However, it is unclear whether dietary factors have a moderating effect on the risk of diabetes associated with atmospheric PM2.5 exposure. Objective To investigate the association between long-term exposure to PM2.5 and diabetes in rural areas of Ningxia, and potential interaction of long-term exposure to atmospheric PM2.5 and diet on diabetes. Methods The study subjects were selected from the baseline survey data of the China Northwest Cohort-Ningxia (CNC-NX) , a natural population cohort. A total of 13917 subjects were included, excluding participants with missing covariate information. We utilized the annual average ambient PM2.5 concentration from 2014 to 2018 as the long-term exposure level. Logistic regression and multiple linear regression were employed to analyze the associations of long-term atmospheric PM2.5 exposure with diabetes and fasting blood glucose levels. Stratification by frequency of vegetable consumption, frequency of fruit consumption, and salty taste was used to examine moderating effects on the diabetes risk associated with atmospheric PM2.5 exposure. Results The mean age of the 13917 subjects was (56.8±10.0) years, and the prevalence of diabetes was 9.8%. Between 2014 and 2018, the average annual concentration of PM2.5 was (38.10±4.67) μg·m−3. The risk (OR) of diabetes was 1.018 (95%CI: 1.005, 1.032) and the fasting blood glucose was increased by 0.011 (95%CI: 0.004, 0.017) mmol·L−1 for each 1 μg·m−3 increase in PM2.5 concentration. Compared to those who consumed vegetables < 1 time per week, individuals who consume vegetables 1-3 times per week and ≥4 times per week had a reduced risk of developing diabetes by 27.1% (OR=0.729, 95%CI: 0.594, 0.893) and 16.8% (OR=0.832, 95%CI: 0.715, 0.971) respectively. Similarly, when compared to those who consumed fruits <1 time per week, individuals who consumed fruits 1-3 times per week and ≥4 times per week exhibited a reduced risk of diabetes by 16.4% (OR=0.836, 95%CI: 0.702, 0.998) and 18.2% (OR=0.818, 95%CI: 0.700, 0.959) respectively. Fasting blood glucose decreased by 0.202 (95%CI: -0.304, -0.101) mmol·L−1 in participants who ate vegetables 1-3 times per week. The effect of salty taste on diabetes and fasting blood glucose was not significant. The results of stratified analysis by dietary factors and PM2.5 concentration showed that the risks of diabetes were increased in the low PM2.5 pollution-low vegetable intake frequency group and the high PM2.5 pollution-low vegetable intake frequency group compared with the low PM2.5 pollution-high vegetable intake frequency group, with OR values of 3.987 (95%CI: 2.943, 5.371) and 1.433 (95%CI: 1.143, 1.796) respectively. The risk of diabetes was 50.1% higher in participants with high PM2.5 pollution and low fruit intake frequency than in participants with low PM2.5 pollution and high fruit intake frequency (OR=1.501, 95%CI: 1.171, 1.926). No interaction was found between salty taste and PM2.5 on diabetes. Conclusion Long-term exposure to ambient PM2.5 is associated with an increased fasting blood glucose and an elevated risk of diabetes in rural Ningxia population. Increasing the frequency of weekly consumption of vegetables or fruits may have a certain protective effect against diabetes occurrence, as well as a moderating effect on diabetes and fasting blood glucose levels associated with long-term exposure to atmospheric PM2.5.

6.
Journal of Environmental and Occupational Medicine ; (12): 207-213, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1012480

RESUMO

Background Atmospheric fine particulate matter (PM2.5) can disrupt the metabolic homeostasis of the liver and accelerate the progression of liver diseases, but there are few studies on the effects of sub-chronic PM2.5 exposure on the liver metabolome. Objectives To investigate the effects of sub-chronic exposure to concentrated PM2.5 on hepatic metabolomics in mice by liquid chromatography-mass spectrometry (LC-MS), and to identify potentially affected metabolites and metabolic pathways. Methods Twelve male C57BL/6J (6 weeks old) mice were randomly divided into two groups: a concentrated PM2.5 exposure group and a clean air exposure group. The mice were exposed to concentrated PM2.5 using the "Shanghai Meteorological and Environmental Animal Exposure System" at Fudan University. The exposure duration was 8 h per day, 6 d per week, for a total of 8 weeks. The mice's liver tissues were collected 24 h after the completion of exposure. LC-MS was performed to assess changes in the hepatic metabolome. Orthogonal partial least squares discriminant analysis and t-test were employed to identify differentially regulated metabolites between the two groups under the conditions of variable important in projection (VIP)≥1.0 and P<0.05. Metabolic pathway enrichment analysis was performed using MetaboAnalyst 5.0 software and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Results A total of 297 differentially regulated metabolites were identified between the concentrated PM2.5 exposure group and the clean air group. Among these metabolites, 142 were upregulated and 155 were downregulated. A total of 38 metabolic pathways were altered, with 7 pathways showing significant perturbation (P<0.05). These pathways involved amino acid metabolism, glucose metabolism, nucleotide metabolism, as well as cofactor and vitamin metabolism. The 7 significant metabolic pathways were pantothenic acid and coenzyme A biosynthesis; purine metabolism; amino sugar and nucleotide sugar metabolism; arginine biosynthesis; alanine, aspartate and glutamate metabolism; aminoacyl-tRNA biosynthesis; and fructose and mannose metabolism. Conclusion The results from metabolomics analysis suggest that sub-chronic exposure to PM2.5 may disrupt hepatic energy metabolism and induce oxidative stress damage. Aspartic acid, succinic acid, ornithine, fumaric acid, as well as purine and xanthine derivatives, were identified as potential early biomarkers of hepatic response to sub-chronic PM2.5 exposure.

7.
Journal of Environmental and Occupational Medicine ; (12): 168-174, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1012475

RESUMO

Background An association between atmospheric fine particulate matter (PM2.5) exposure and Parkinson's disease (PD) has been suggested by previous studies, but the results of current epidemiological studies are still inconclusive. Objective To systematically evaluate the relationship between exposure to ambient PM2.5 and the risk of PD, as well as to explore potential influencing factors, aiming to provide scientific evidence for formulating early prevention strategies for PD. Methods Cochrane Library, PubMed, Web of Science, Medline, Embase, China National Know-ledge Infrastructure (CNKI), Wanfang Database, and VIP Chinese Science and Technology Journal Database were queried. The search terms included Parkinson's disease, particulate matter 2.5, and PM2.5 in both Chinese and English. Cohort studies examining the association between atmospheric PM2.5 exposure and the risk of PD were collected and searched from the inception of each database to June 26, 2023. The identified literature was screened, and the basic information of the included studies and their research subjects, outcome indicators, quantitative results of each study, as well as the information required by bias risk assessment were extracted. The Newcastle-Ottawa Scale was employed to assess the risk of literature bias. Meta-analysis, subgroup analysis, sensitivity analysis, and publication bias analysis were conducted in Stata 15.0 software. Results Twelve cohort studies were identified. A total of 17443136 participants with follow-up periods ranging from 3.5 to 22 years were included in the analysis. The meta-analysis, utilizing a random-effects model, revealed that PD risk was elevated by 6% after exposure to PM2.5 [HR=1.06 (95%CI: 1.02, 1.11), P=0.006]. The subgroup analysis demonstrated that exposure to PM2.5 increased PD risk by 6% in North America [HR=1.06 (95%CI: 1.00, 1.12), P=0.033] and by 17% in East Asia [HR=1.17 (95%CI: 1.02, 1.33), P=0.020]. However, the effect was not statistically significant in Europe. PD risk exhibited a 7% rise [HR=1.07 (95%CI: 1.02, 1.14), P=0.011] in individuals aged 60 years and older, which was different from that in individuals younger than 60 years. Exposure to various concentrations of PM2.5 was observed to associate with an elevated risk of PD. The inclusion of adjustments for PD-related comorbidities did not alter the conclusion that ambient PM2.5 exposure might elevate the risk of PD. The studies with a follow-up duration exceeding 5 years and reporting more than 1000 PD cases suggested a significant increase in the risk of PD due to ambient PM2.5 exposure [HR=1.06 (95%CI: 1.01, 1.12), P=0.012; HR=1.06 (95%CI: 1.01, 1.11), P=0.027, respectively]. Conversely, no significant association was identified between ambient PM2.5 exposure and the risk of PD within the cohorts with a follow-up duration of less than 5 years and reporting fewer than 1000 PD cases [HR=1.09 (95%CI: 0.95, 1.26), P=0.214; HR=1.12 (95%CI: 0.98, 1.02), P=0.092, respectively]. The sensitivity analysis showed that the results were stable. The publication bias analysis and the combined trim-and-fill method showed that the results were robust. Conclusion The risk of PD could be increased by ambient PM2.5 exposure and influenced by age and area. The research results might be affected by the duration of follow-up and the quantity of PD cases reported.

8.
Biomedical and Environmental Sciences ; (12): 38-49, 2023.
Artigo em Inglês | WPRIM | ID: wpr-970289

RESUMO

OBJECTIVE@#This study aimed to investigate the association of ambient PM2.5 exposure with blood pressure (BP) at the population level in China.@*METHODS@#A total of 14,080 participants who had at least two valid blood pressure records were selected from the China Health and Retirement Longitudinal Survey during 2011-2015. Their long-term PM2.5 exposure was assessed at the geographical level, on the basis of a regular 0.1° × 0.1° grid over China. A mixed-effects regression model was used to assess associations.@*RESULTS@#Each decrease of 10 μg/m3 in the 1 year-mean PM2.5 concentration (FPM1Y) was associated with a decrease of 1.24 [95% confidence interval (CI): 0.84-1.64] mmHg systolic BP (SBP) and 0.50 (95% CI: 0.25-0.75) mmHg diastolic BP (DBP), respectively. A robust association was observed between the long-term decrease in PM2.5 and decreased BP in the middle-aged and older population. Using a generalized additive mixed model, we further found that SBP increased nonlinearly overall with FPM1Y but in an approximately linear range when the FPM1Y concentration was < 70 µg/m3; In contrast, DBP increased approximately linearly without a clear threshold.@*CONCLUSION@#Efficient control of PM2.5 air pollution may promote vascular health in China. Our study provides robust scientific support for making the related air pollution control policies.


Assuntos
Pessoa de Meia-Idade , Humanos , Idoso , Material Particulado/análise , Pressão Sanguínea , Poluentes Atmosféricos/análise , Seguimentos , Hipertensão/etiologia , População do Leste Asiático , Exposição Ambiental/análise , Poluição do Ar/análise , China/epidemiologia
9.
Acta Academiae Medicinae Sinicae ; (6): 382-389, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981277

RESUMO

Objective To explore the overall level,distribution characteristics,and differences in household fine particulate matter (PM2.5) pollution caused by fuel burning in urban and rural areas in China. Methods The relevant articles published from 1991 to 2021 were retrieved and included in this study.The data including the average concentration of household PM2.5 and urban and rural areas were extracted,and the stoves and fuel types were reclassified.The average concentration of PM2.5 in different areas was calculated and analyzed by nonparametric test. Results The average household PM2.5 concentration in China was (178.81±249.91) μg/m3.The mean household PM2.5 concentration was higher in rural areas than in urban areas[(206.08±279.40) μg/m3 vs. (110.63±131.16) μg/m3;Z=-5.45,P<0.001] and higher in northern areas than in southern areas[(224.27±301.66) μg/m3 vs.(130.11±140.61) μg/m3;Z=-2.38,P=0.017].The north-south difference in household PM2.5 concentration was more significant in rural areas than in urban areas[(324.19±367.94) μg/m3 vs.(141.20±151.05) μg/m3,χ2=-5.06,P<0.001].The PM2.5 pollution level showed differences between urban and rural households using different fuel types (χ2=92.85,P<0.001),stove types (χ2=74.42,P<0.001),and whether they were heating (Z=-4.43,P<0.001).Specifically,rural households mainly used solid fuels (manure,charcoal,coal) and traditional or improved stoves,while urban households mainly used clean fuels (gas) and clean stoves.The PM2.5 concentrations in heated households were higher than those in non-heated households in both rural and urban areas (Z=-4.43,P<0.001). Conclusions The household PM2.5 pollution caused by fuel combustion in China remains a high level.The PM2.5 concentration shows a significant difference between urban and rural households,and the PM2.5 pollution is more serious in rural households.The difference in the household PM2.5 concentration between urban and rural areas is more significant in northern China.PM2.5 pollution in the households using solid fuel,traditional stoves,and heating is serious,and thus targeted measures should be taken to control PM2.5 pollution in these households.


Assuntos
Humanos , Material Particulado/análise , Poluição do Ar em Ambientes Fechados/análise , Culinária , Exposição Ambiental/análise , China , População Rural
10.
Journal of Environmental and Occupational Medicine ; (12): 1095-1101, 2023.
Artigo em Chinês | WPRIM | ID: wpr-988756

RESUMO

Elevated blood pressure is one of the major contributors to cardiovascular disease and premature death. The exposure to ambient fine particulate matter (PM2.5) is closely associated with changes in blood pressure, and even short-term exposure to PM2.5 can lead to an increase in blood pressure. PM2.5 is a complex mixture that exerts different toxicities and triggers increased blood pressure through various mechanisms. Therefore, in this article, we provided a comprehensive review of published studies on the effects of short-term exposure to PM2.5 and its components on blood pressure, and elaborated potential mechanisms from four aspects, including oxidative stress and inflammatory response, endothelial dysfunction, autonomic nervous system disorders and hypothalamus-pituitary-adrenal axis activation, and epigenome alteration. Given the limitations of existing research, future prospective studies can be conducted on diverse populations, using more precise exposure measurement methods and multi-omics approaches, to further elucidate the mechanisms underlying the effects of PM2.5 and its various components on blood pressure. The findings would provide a theoretical foundation for effective protection of public health, particularly vulnerable groups.

11.
Journal of Environmental and Occupational Medicine ; (12): 1232-1239, 2023.
Artigo em Chinês | WPRIM | ID: wpr-998746

RESUMO

Background Public places are frequently polluted by cigarette smoking, and there is a lack of accurate, real-time, and intelligent monitoring technology to identify smoking behavior. It is necessary to develop a tool to identify cigarette smoking behavior in public places for more efficient control of cigarette smoking and better indoor air quality. Objective To construct a model for recognizing cigarette smoking behavior based on real-time indoor concentrations of PM2.5 in public places. Methods Real-time indoor PM2.5 concentrations were measured for at least 7 continuous days in 10 arbitrarily selected places (6 public service providers and and 4 office or other places) from Oct. to Nov. 2022 in Pudong New Area, Shanghai. Indoor nicotine concentrations were monitored with passive samplers simultaneously. Outdoor PM2.5 concentration data were obtained from three municipal environmental monitoring stations which were nearest to each monitoring point during the same period. Mann-Whitney U test was used to compare indoor and outdoor means of PM2.5 concentrations, and Spearman rank correlation was used to analyze indoor PM2.5 and nicotine concentrations. An interactive plot and a random forest model was applied to examine the association between video observation validated indoor smoking behavior and real-time indoor PM2.5 concentrations in an Internet cafe. Results The average indoor PM2.5 concentration in the places providing public services [(97.5±149.3) µg·m−3] was significantly higher than that in office and other places [(19.8±12.2) µg·m−3] (P=0.011). The indoor/outdoor ratio (I/O ratio) of PM2.5 concentration in the public service providers ranged from 1.1 to 19.0. Furthermore, the indoor PM2.5 concentrations in the 10 public places were significantly correlated with the nicotine concentrations (rs=0.969, P<0.001). Among them, the top 3 highly polluted places were Internet cafes, chess and card rooms, and KTV. The results of random forest modeling showed that, for synchronous real-time PM2.5 concentration, the area under the curve (AUC) was 0.66, while for PM2.5 concentration at a lag of 4 min after the incidence of smoking behavior, the AUC increased to 0.72. Conclusion The indoor PM2.5 concentrations in public places are highly correlated with smoking behavior. Based on real-time indoor PM2.5 monitoring, a preliminary recognition model for smoking behavior is constructed with acceptable accuracy, indicating its potential values applied in smoking control and management in public places.

12.
Journal of Environmental and Occupational Medicine ; (12): 711-715, 2023.
Artigo em Chinês | WPRIM | ID: wpr-976519

RESUMO

Air pollution is a serious global public health problem. Air pollutants, especially fine particulate matter (PM2.5), are associated with increased risks of various diseases. In recent years, studies have confirmed that PM2.5 is closely related to chronic kidney disease, secondary kidney disease, and end-stage renal disease. This review summarized the effects of PM2.5 and its components on kidney diseases, and the potential mechanism of kidney injury induced by PM2.5 exposure from the aspects of inflammatory injury and oxidative stress, renal hemodynamic changes, and DNA damage and methylation, aiming to provide an insight for further mechanism research and the prevention and control of air pollution-induced kidney damage.

13.
Journal of Environmental and Occupational Medicine ; (12): 595-600, 2023.
Artigo em Chinês | WPRIM | ID: wpr-973653

RESUMO

Ambient fine particulate matter (PM2.5) is particulate matter with an aerodynamic diameter less than 2.5 μm, and has an extremely wide range of sources. It affects the environmental quality in many cities and regions around the world, and associates with lots of negative effects on public health. E-cigarettes, a group of products that atomize e-liquid by an atomizer and then deliver nicotine and/or other substances to the respiratory system, have been introduced as smoking cessation products or replacement of tobacco cigarettes in recent years. The usage rate of e-cigarettes has grown rapidly all over the world. When these two pollutants coexist in the same atmosphere, they would induce certain adverse health effects not only on the e-cigarette users, but also on the people around them. Besides causing cardiopulmonary toxicity, the co-existing pollutants may associate with higher risks of developmental toxicity and carcinogenicity. In addition, the combined exposure may be related with the occurrence of depression. Therefore, there is an urgent need to conduct studies on the toxic potential of the combined exposure to PM2.5 and e-cigarettes, which is also important for the evaluation and control of the atmospheric compound pollution associated health risk. This paper reviewed the current situation of PM2.5 pollution and e-cigarettes use, introduced the epidemiological studies of PM2.5 and e-cigarette combined exposure, their toxic effects in vivo and in vitro, and possible mechanisms, aiming to provide a reference for subsequent toxicity studies.

14.
Rev. saúde pública (Online) ; 57: 67, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1515530

RESUMO

ABSTRACT OBJECTIVE This study aims to assess covid-19 morbidity, mortality, and severity from 2020 to 2021 in five Brazilian Amazon states with the highest records of wildfires. METHODS A distributed lag non-linear model was applied to estimate the potential exposure risk association with particulate matter smaller than 2.5-µm in diameter (PM2.5). Daily mean temperature, relative humidity, percentual of community mobility, number of hospital beds, days of the week, and holidays were considered in the final models for controlling the confounding factors. RESULTS The states of Para, Mato Grosso, and Amazonas have reported the highest values of overall cases, deaths, and severe cases of covid-19. The worrying growth in the percentual rates in 2020/2021 for the incidence, severity, and mortality were highlighted in Rondônia and Mato Grosso. The growth in 2020/2021 in the estimations of PM2.5 concentrations was higher in Mato Grosso, with an increase of 24.4%, followed by Rondônia (14.9%). CONCLUSION This study establishes an association between wildfire-generated PM2.5 and increasing covid-19 incidence, mortality, and severity within the studied area. The findings showed that the risk of covid-19 morbidity and mortality is nearly two times higher among individuals exposed to high concentrations of PM2.5. The attributable fraction to PM2.5 in the studied area represents an important role in the risk associated with covid-19 in the Brazilian Amazon region.


Assuntos
Incêndios Florestais , Material Particulado , COVID-19
15.
São Paulo med. j ; 141(4): e2022210, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1432443

RESUMO

ABSTRACT BACKGROUND: Exposure to air pollutants and illness by severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infection can cause serious pulmonary impairment. OBJECTIVE: To identify a possible association between exposure to air pollutants and hospitalizations due to SARS-Cov-2. DESIGN AND SETTING: Ecological time-series study carried out in Taubaté, Tremembé, and Pindamonhangaba in 2020 and 2021. METHODS: Study with Sars-Cov-2 hospitalizations with information on hospitalization date, sex and age of the subjects, duration of hospitalization, type of discharge, and costs of these hospitalizations. Statistical analysis was performed through a negative binomial regression, with data on pollutant concentrations, temperature, air relative humidity, and hospitalization date. Coefficients obtained by the analysis were transformed into relative risk for hospitalization, which estimated hospitalizations excess according to an increase in pollutant concentrations. RESULTS: There were 1,300 hospitalizations and 368 deaths, with a predominance of men (61.7%). These data represent an incidence rate of 250.4 per 100,000 inhabitants and 28.4% hospital lethality. Significant exposure (P value < 0.05) occurred seven days before hospital admission (lag 7) for nitrogen dioxide (NO2) (relative risk, RR = 1.0124) and two days before hospital admission for PM2.5 (RR = 1.0216). A 10 μg/m3 in NO2 concentration would decrease by 320 hospitalizations and ¼ US $ 240,000 in costs; a 5 μg/m3 in PM2.5 concentration would decrease by 278 hospitalizations and ¼ US $ 190,000 in costs. CONCLUSION: An association between exposure to air pollutants and hospital admission due to Sars-Cov-2 was observed with excess hospitalization and costs for the Brazilian public health system.

16.
Journal of Environmental and Occupational Medicine ; (12): 1262-1268, 2022.
Artigo em Chinês | WPRIM | ID: wpr-960557

RESUMO

Background There is a lack of evidence on whether exposure to PM2.5 and its constituents would affect the relationship between the dietary approaches to stop hypertension (DASH) and central obesity. Objective To investigate the effect of exposure to PM2.5 and its constituents on the correlation between the DASH dietary pattern and the prevalence of central obesity. Methods The data were obtained from the baseline survey of the "Xinjiang Multi-Ethnic Natural Population Cohort Construction and Health Follow-Up Study" in Urumqi. A DASH score was calculated according to intake frequency of 8 food groups, and summed from intake frequency of recommended food groups scored from 1 to 5 from low to high, and intake frequency of restricted food groups scored from 1 to 5 from high to low. A higher DASH score indicates better compliance with the DASH dietary pattern. We estimated exposure using satellite-derived PM2.5 and a chemical transport model (GEOS-Chem) for its constituents, including organic carbon (OC), black carbon (BC), sulfate (SO42−), nitrate (NO3−), ammonium (NH4+), and soil dust. Central obesity was defined by waist circumference: ≥90 cm for men or ≥85 cm for women according to Criteria of weight for adults (WS/T 428—2013). A logistic regression model was used to analyze the effects of the DASH dietary pattern as well as PM2.5 and its constituents on central obesity, and a stratified analysis was used to explore the effects of PM2.5 and its constituents on the association between the DASH dietary pattern and central obesity. Results The study included 9 565 urban residents, aged (62.30±9.42) years, with a central obesity prevalence rate of 60.75%. After adjusting for selected confounders, the DASH score Q5 group had a 17.5% lower risk of central obesity than the Q1 group (OR=0.825, 95%CI: 0.720-0.947). PM2.5 and its constituents OC, BC, SO42−, NH4+, and soil dust were positively associated with the prevalence of central obesity, but no association was observed between constituent NO3− exposure and central obesity. The stratified analysis revealed that the prevalence of central obesity was reduced in the DASH score Q5 group in participants exposed to low concentrations of PM2.5 and its constituents NO3−, NH4+, and soil dust, while the protective effect of the DASH pattern on central obesity disappeared in subjects exposed to high concentrations of PM2.5 and its constituents NO3−, NH4+, and soil dust. Conclusion Exposure to PM2.5 and its constituents NO3−, NH4+, and soil dust could attenuate the protective effect of the DASH pattern on central obesity.

17.
Journal of Environmental and Occupational Medicine ; (12): 942-948, 2022.
Artigo em Chinês | WPRIM | ID: wpr-960506

RESUMO

Air pollution has always been an important factor threatening population health, and with the acceleration of urbanization in China, the adverse health effects associated with air pollution is becoming more and more serious. Numerous scientific studies have shown that chemical components of fine particulate matter are closely related to human health damage. This paper elaborated reported human health outcomes of PM2.5 chemical components, including fatality, morbidity, reproduction & development, and physiological indexes or biomarkers, reviewed the research progress of PM2.5 chemical constituents on human health in China, and summarized the deficiencies of current research, aiming to provide useful clues for future relevant studies.

18.
Journal of Environmental and Occupational Medicine ; (12): 141-146, 2022.
Artigo em Chinês | WPRIM | ID: wpr-960383

RESUMO

Background Atmospheric fine particulate matter (PM2.5) can induce abnormal early embryo development, resulting in adverse pregnancy outcomes such as embryo damage and spontaneous abortion. The vascular remodeling of maternal-fetal interface regulated by hypoxia inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) axis is a key link in early embryo development. Objective To investigate the effects of pre-pregnancy PM2.5 exposure on the uterine state of mice before conception and the vascular remodeling of maternal-fetal interface after conception, and to further explore the regulatory role of the HIF-1α/VEGF axis. Methods Forty eight-week-old C57BL/6J sexually mature female mice and several males (for mating, without any treatment) were adaptive fed for 1 week. The female mice were divided into a PM2.5 exposure group and a control group, 20 mice per group. The PM2.5 exposure group was given 3 mg·kg−1 PM2.5 suspension by nasal instillation, once every other day for four weeks; the control group were treated with the same dose of blank sampling membrane suspension. Body weight of the mice was recorded every week during the experimental period. At the end of the exposure, six mice from each group were sacrificed. Then the uterus was weighted and its organ coefficients were calculated, a histopathological morphology evaluation was conducted by HE staining, and the mRNA expressions of HIF-1α, VEGF and its receptors Flt-1 and Flk-1 in the uterus samples were further examined. The remaining 14 female mice in each group were caged with male mice overnight with a sex ratio of 2:1, then we calculated the pregnancy rate. On gestation day 10 (GD10), the female mice were decapitated and the uterus was dissected, the histopathological morphology of embryo and placenta were observed by HE staining, and the mRNA expressions of HIF-1α, VEGF and its receptors Flt-1 and Flk-1 were detected as well in the uterus samples. Results Compared with the control group, the pre-pregnancy PM2.5 exposure had no significant effect on body weight gain of the female mice, but decreased uterine organ coefficient, accompanied by pathological damage such as endometrium thinning as well as decreased mRNA expressions of HIF-1α, VEGF and its receptors Flt-1 and Flk-1 (all Ps<0.05). After mating, the pre-pregnancy PM2.5 exposure induced a decrease of the pregnancy rate (control group: 9/14; exposure group: 5/14) and abnormal embryo arrangement, small placenta, narrowing of spiral arteries (control group: 1.00±0.06; exposure group: 0.86±0.08; P=0.01), as well as significant decreases in HIF-1α, VEGF and its receptor Flk-1 mRNA expressions. (all Ps <0.05). Conclusion Pre-pregnancy PM2.5 exposure has adverse effects on the pathological structure and angiogenesis in female mice uterus, leading to abnormal vascular network remodeling at the mother-fetal interface after conception, and the HIF-1α/VEGF axis may play a regulatory role.

19.
Biomedical and Environmental Sciences ; (12): 473-484, 2022.
Artigo em Inglês | WPRIM | ID: wpr-939585

RESUMO

Objective@#Fine particulate matter (PM 2.5) is an air pollutant that has become of great concern in recent years. Numerous studies have found that PM 2.5 may contribute to lung cancer, but the pathogenesis has not yet been fully elucidated. In this study, we explored the roles of exosomes from bronchial epithelial cells in PM 2.5-promoted lung cancer metastasis.@*Methods@#Exosomes were isolated from cell supernatants. An animal model of lung metastasis (established by tail vein injection of A549-luc) and in vitro studies with lung cancer cell lines were used to investigate the effects of exosomes derived from PM 2.5-treated human bronchial epithelial cells (PHBE-exo).@*Results@#The animal experiments revealed that PHBE-exo-treated mice showed stronger luciferase activity and a larger relative metastatic region in the lungs, thus indicating that PHBE-exo promoted the metastatic potential of lung cancer. Additionally, PHBE-exo promoted the migration, invasion and epithelial-to-mesenchymal transition of lung cancer cells, in a manner mediated by activation of c-Jun N-terminal kinase.@*Conclusion@#These results implied that PM 2.5 may promote the development of lung cancer through exosomes derived from bronchial epithelial cells, thus providing a potential interventional target for lung cancer. These findings broadened our understanding of cancer-promoting mechanisms of environmental pollutants.


Assuntos
Animais , Humanos , Camundongos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Exossomos/metabolismo , Neoplasias Pulmonares/metabolismo , Material Particulado/toxicidade
20.
Journal of Environmental and Occupational Medicine ; (12): 1417-1422, 2022.
Artigo em Chinês | WPRIM | ID: wpr-953964

RESUMO

Ambient air pollution has become a widespread global public health problem. As one of the main components of ambient air pollution, fine particulate matter (PM2.5), with its small diameter and large surface area, can carry a variety of toxic substances and enter the blood circulation directly through the blood-air barrier, damaging various tissues and organs of human body. Studies have shown that PM2.5 exposure during pregnancy can disrupt the mother's and child's thyroid function. Since the fetal thyroid gland does not begin to develop until around the sixth week of pregnancy, the fetal thyroid hormone is almost entirely dependent on the mother during early stages of pregnancy, and maternal thyroid hormone level play a crucial role in the growth and development of fetus. When a mother is exposed to PM2.5 during pregnancy, placenta, the "bridge" between mother and fetus, is also affected to some extent, including changes in placental iodine uptake and oxidative stress, inflammation, and DNA methylation in placental tissue. Exposure to PM2.5 during pregnancy also alters maternal thyroid hormone level and normal placental function, which can have a detrimental effect on pregnancy outcomes, such as preterm birth, low birth weight, and neurological abnormalities. This paper reviewed the effects of PM2.5 exposure during different trimesters on maternal and infant thyroid function, placental function, and pregnancy outcomes, aiming to provide more accurate protection of maternal and fetal health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA