Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 880
Filtrar
1.
J. bras. nefrol ; 46(1): 85-92, Mar. 2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1534768

RESUMO

Abstract In the human gut, there is a metabolically active microbiome whose metabolic products reach various organs and are used in the physiological activities of the body. When dysbiosis of intestinal microbial homeostasis occurs, pathogenic metabolites may increase and one of them is trimethyl amine-N-oxide (TMAO). TMAO is thought to have a role in the pathogenesis of insulin resistance, diabetes, hyperlipidemia, atherosclerotic heart diseases, and cerebrovascular events. TMAO level is also associated with renal inflammation, fibrosis, acute kidney injury, diabetic kidney disease, and chronic kidney disease. In this review, the effect of TMAO on various kidney diseases is discussed.


Resumo No intestino humano, existe um microbioma metabolicamente ativo cujos produtos metabólicos alcançam diversos órgãos e são utilizados nas atividades fisiológicas do corpo. Quando ocorre disbiose da homeostase microbiana intestinal, os metabólitos patogênicos podem aumentar, e um deles é o N-óxido de trimetilamina (TMAO). Acredita-se que o TMAO tenha um papel na patogênese da resistência à insulina, diabetes, hiperlipidemia, doenças cardíacas ateroscleróticas e eventos cerebrovasculares. O nível de TMAO também está associado à inflamação renal, fibrose, lesão renal aguda, doença renal diabética e doença renal crônica. Nesta revisão, discute-se o efeito do TMAO em diversas doenças renais.

2.
Acta Pharmaceutica Sinica ; (12): 135-142, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005426

RESUMO

Berberine (BBR) is the main pharmacological active ingredient of Coptidis, which has hypoglycemic effect, but its clinical application is limited due to its poor oral bioavailability. Polyphenols, derived from cinnamon, are beneficial for type 2 diabetes mellitus (T2DM). The combination of both may have an additive effect. The aim of this study was to investigate the hypoglycemic effect and mechanism of combined medication in diabetic rats. The modeling rats were randomly divided into 5 groups (berberine group, cinnamon group, combined group, metformin group, diabetic control group) and normal control group. The animal experiments were approved by the Animal Ethics Committee (approval number: HMUIRB2022003). The subjects were given orally, and the control group was given equal volume solvent and body weight was measured weekly. Thirty days after administration, oral glucose tolerance test and insulin sensitivity test were performed, and fasting blood glucose (FBG), glycated serum protein (GSP), and serum insulin (INS) levels were detected; high-throughput sequencing technology was used to detect intestinal microbiota structure; real-time quantitative PCR (RT-qPCR) and Western blot were used to detect G protein-coupled receptor 5 (TGR5) and glucagon-like peptide-1 (GLP-1) expression levels. The results showed that, compared with the diabetic control group, the levels of FBG (P < 0.01) and GSP (P < 0.01) in the combined group were lower, and the insulin resistance was improved, which was better than that in the berberine group. Combined treatment increased the relative abundance of Bacteroides, Prevotella and Lactobacillus, reversed the decrease in Lactobacillus in the berberine alone induction group, and the combination of the two could promote the expression of TGR5 and GLP-1. In summary, the combined application of cinnamon and berberine can regulate glucose metabolism better than the application of berberine alone. Berberine combined with cinnamon can improve the function of pancreatic islet β cells in diabetes mellitus type 2 rats by changing the intestinal microbiota, increasing the expression of TGR5 and GLP-1 proteins, and thereby better regulating glucose metabolism.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 240-247, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005274

RESUMO

Colorectal cancer is a common malignant tumor in the digestive system, ranking third in incidence and second in the cause of death worldwide. In recent years, the incidence of colorectal cancer is on the rise, and the age of patients with colorectal cancer tends to be younger, with a heavy cancer burden. It is of great significance to prevent the occurrence, development, recurrence, and metastasis of colorectal cancer to reduce the incidence and mortality of colorectal cancer. Patriniae Herba has the effects of clearing heat, removing toxins, eliminating carbuncle, and discharging pus and shows good therapeutic efficacy on inflammatory bowel disease, digestive tract tumors, pelvic inflammation, gynecological tumor, and so on. Patriniae Herba is often used in the clinical treatment of colorectal cancer, but its mechanism of action is not clear. Modern studies have found that Patriniae Herba contains triterpenoids, saponins, iridoids, flavonoids, and other chemical components, with antioxidant, anti-tumor, anti-bacterial, and other pharmacological effects. The main anti-tumor components of Patriniae Herba are flavonoids. The analysis of network pharmacology and the spectrum-effect relationship has suggested that quercetin, luteolin, apigenin, isoorientin, and isovitexin play a major role in inhibiting the occurrence and development of colorectal cancer. In vivo and in vitro studies have shown that flavonoids in Patriniae Herba can play an anti-tumor role in various ways, such as preventing precancerous lesions of colorectal cancer, inhibiting the growth and proliferation of cancer cells, blocking cancer cell cycle, promoting cancer cell apoptosis, and reversing drug resistance of colorectal cancer. The oral availability of flavonoids is low. The gut is the main metabolic site of flavonoids in the body, its metabolic pathway is closely related to gut microbiota. This paper reviewed the anti-tumor mechanism of flavonoids and their influence on gut microbiota to provide a reference for further research on the mechanism of Patriniae Herba against colorectal cancer and its clinical application.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 169-177, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1003779

RESUMO

Chronic obstructive pulmonary disease (COPD) is a heterogeneous lung condition characterized by persistent and often progressive airflow obstruction, including airway abnormalities (e.g., bronchitis and bronchiolitis) and chronic respiratory symptoms (e.g., dyspnea, cough, and expectoration). It is one of the leading causes of death worldwide. According to the theory of traditional Chinese medicine (TCM), the lung and large intestine are interior-exterior related. Therefore, COPD can be treated from both the lung and intestine by the methods of tonifying and invigorating lung, spleen, and kidney, dispelling phlegm, and expelling stasis. Gut microbiota plays a key role in human immunity, nerve, and metabolism and may act on COPD by affecting the structures and functions of lung and intestine tissue and regulating lung inflammation and immunity. TCM can restore the balance of gut microbiota, which is conducive to the recovery from COPD. For example, the treatment method of tonifying lung and invigorating kidney can regulate gut microbiota, alleviate pulmonary and intestinal injuries, and improve lung immunity. The treatment methods of dispelling phlegm and expelling stasis can regulate gut microbiota and reduce pulmonary inflammation. According to the TCM theory of lung and large intestine being interior-exterior related, this review elaborates on the connotation of TCM in the treatment of COPD by regulating gut microbiota, aiming to provide new ideas for the clinical treatment of COPD via gut microbiota.

5.
Braz. j. biol ; 842024.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469260

RESUMO

Abstract The impact of antibiotics on growth, cocoon production was assessed in addition to isolation and characterization of bacteria associated with silkworm gut of infected larvae. Larval rearing was maintained at recommended conditions of temperature and humidity. Silkworm larvae showing abnormal symptoms were collected from the control group and dissected for gut collection. Bacteria were isolated from the gut content by spreading on agar plates and incubated at 37 °C for 48 hrs. Bacterial identification and phylogenetic analysis were carried out by 16S rRNA gene sequencing. The isolated bacteria were subjected to antimicrobial susceptibility test (disc diffusion methods) by using Penicillin (10 µg/mL), Tetracycline (30 µg/mL), Amoxicillin (25 µg/mL), Ampicillin (10 µg/mL), and Erythromycin (15 µg/mL). All isolated strains showed positive results for the catalase test. We isolated and identified bacterial strains (n = 06) from the gut of healthy and diseased silkworm larvae. Based on the 16S rRNA gene sequence, isolated bacteria showed close relation with Serratia, Bacillus, and Pseudomonas spp. Notably, 83.3% of strains were resistant to Penicillin, Tetracycline, Amoxicillin, Ampicillin, and Erythromycin but 16.6% showed antibiotic susceptibility to the above-mentioned commonly used antibiotics. Silkworm larvae fed on penicillin-treated leaves showed significant improvement in larval weight, larval length, and cocoon production. Significantly higher larval weight (6.88g), larval length (5.84cm), and cocoon weight (1.33g) were recorded for larvae fed on leaves treated with penicillin as compared to other antibiotics. Isolated bacterial strains showed close relation with Serratia spp., Bacillus spp. and Pseudomonas spp.


Resumo O impacto dos antibióticos no crescimento e na produção do casulo foi avaliado, além do isolamento e caracterização das bactérias associadas ao intestino de larvas infectadas do bicho-da-seda. A criação das larvas foi mantida nas condições recomendadas de temperatura e umidade. As larvas do bicho-da-seda com sintomas anormais foram coletadas do grupo controle e dissecadas para coleta do intestino. As bactérias foram isoladas do conteúdo intestinal por espalhamento em placas de ágar e incubadas a 37° C durante 48 horas. A identificação bacteriana e a análise filogenética foram realizadas pelo sequenciamento do gene 16S rRNA. As bactérias isoladas foram submetidas a teste de sensibilidade antimicrobiana (métodos de difusão em disco) com penicilina (10 µg / mL), tetraciclina (30 µg / mL), amoxicilina (25 µg / mL), ampicilina (10 µg / mL) e eritromicina (15 µg / mL). Todas as cepas isoladas apresentaram resultados positivos para o teste da catalase. Isolamos e identificamos cepas bacterianas (n = 06) do intestino de larvas de bicho-da-seda saudáveis e doentes. Com base na sequência do gene 16S rRNA, as bactérias isoladas mostraram estreita relação com Serratia, Bacillus e Pseudomonas spp. Notavelmente, 83,3% das cepas eram resistentes a penicilina, tetraciclina, amoxicilina, ampicilina e eritromicina, mas 16,6% mostraram suscetibilidade aos antibióticos comumente usados mencionados acima. As larvas do bicho-da-seda alimentadas com folhas tratadas com penicilina apresentaram melhora significativa no peso larval, comprimento larval e produção de casulo. Peso larval significativamente maior (6,88g), comprimento larval (5,84cm) e peso do casulo (1,33g) foram registrados para larvas alimentadas com folhas tratadas com penicilina, em comparação com outros antibióticos. Cepas bacterianas isoladas mostraram estreita relação com Serratia spp., Bacillus spp. e Pseudomonas spp.

6.
Braz. j. biol ; 84: e249664, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1345558

RESUMO

Abstract The impact of antibiotics on growth, cocoon production was assessed in addition to isolation and characterization of bacteria associated with silkworm gut of infected larvae. Larval rearing was maintained at recommended conditions of temperature and humidity. Silkworm larvae showing abnormal symptoms were collected from the control group and dissected for gut collection. Bacteria were isolated from the gut content by spreading on agar plates and incubated at 37 °C for 48 hrs. Bacterial identification and phylogenetic analysis were carried out by 16S rRNA gene sequencing. The isolated bacteria were subjected to antimicrobial susceptibility test (disc diffusion methods) by using Penicillin (10 µg/mL), Tetracycline (30 µg/mL), Amoxicillin (25 µg/mL), Ampicillin (10 µg/mL), and Erythromycin (15 µg/mL). All isolated strains showed positive results for the catalase test. We isolated and identified bacterial strains (n = 06) from the gut of healthy and diseased silkworm larvae. Based on the 16S rRNA gene sequence, isolated bacteria showed close relation with Serratia, Bacillus, and Pseudomonas spp. Notably, 83.3% of strains were resistant to Penicillin, Tetracycline, Amoxicillin, Ampicillin, and Erythromycin but 16.6% showed antibiotic susceptibility to the above-mentioned commonly used antibiotics. Silkworm larvae fed on penicillin-treated leaves showed significant improvement in larval weight, larval length, and cocoon production. Significantly higher larval weight (6.88g), larval length (5.84cm), and cocoon weight (1.33g) were recorded for larvae fed on leaves treated with penicillin as compared to other antibiotics. Isolated bacterial strains showed close relation with Serratia spp., Bacillus spp. and Pseudomonas spp.


Resumo O impacto dos antibióticos no crescimento e na produção do casulo foi avaliado, além do isolamento e caracterização das bactérias associadas ao intestino de larvas infectadas do bicho-da-seda. A criação das larvas foi mantida nas condições recomendadas de temperatura e umidade. As larvas do bicho-da-seda com sintomas anormais foram coletadas do grupo controle e dissecadas para coleta do intestino. As bactérias foram isoladas do conteúdo intestinal por espalhamento em placas de ágar e incubadas a 37° C durante 48 horas. A identificação bacteriana e a análise filogenética foram realizadas pelo sequenciamento do gene 16S rRNA. As bactérias isoladas foram submetidas a teste de sensibilidade antimicrobiana (métodos de difusão em disco) com penicilina (10 µg / mL), tetraciclina (30 µg / mL), amoxicilina (25 µg / mL), ampicilina (10 µg / mL) e eritromicina (15 µg / mL). Todas as cepas isoladas apresentaram resultados positivos para o teste da catalase. Isolamos e identificamos cepas bacterianas (n = 06) do intestino de larvas de bicho-da-seda saudáveis e doentes. Com base na sequência do gene 16S rRNA, as bactérias isoladas mostraram estreita relação com Serratia, Bacillus e Pseudomonas spp. Notavelmente, 83,3% das cepas eram resistentes a penicilina, tetraciclina, amoxicilina, ampicilina e eritromicina, mas 16,6% mostraram suscetibilidade aos antibióticos comumente usados mencionados acima. As larvas do bicho-da-seda alimentadas com folhas tratadas com penicilina apresentaram melhora significativa no peso larval, comprimento larval e produção de casulo. Peso larval significativamente maior (6,88g), comprimento larval (5,84cm) e peso do casulo (1,33g) foram registrados para larvas alimentadas com folhas tratadas com penicilina, em comparação com outros antibióticos. Cepas bacterianas isoladas mostraram estreita relação com Serratia spp., Bacillus spp. e Pseudomonas spp.


Assuntos
Animais , Bombyx , Antibacterianos/farmacologia , Filogenia , Bactérias/genética , RNA Ribossômico 16S/genética , Testes de Sensibilidade Microbiana , Larva
7.
Revista Digital de Postgrado ; 12(1): 353, abr. 2023. tab, graf
Artigo em Espanhol | LILACS, LIVECS | ID: biblio-1509825

RESUMO

El sistema intestinal posee una capacidad regenerativa intrínseca y fisiológica que tiene lugar a partir de las células madreLgr5+ ubicadas en el fondo de las criptas intestinales, las cuales se diferencian hacia las células progenitoras secretoras y absortivas con sus respectivas células especializadas mediante la activación de señalizaciones intracelulares como Wnt, Hippo y Notch. Condiciones adversas como lesiones e infecciones tisulares inducen esta actividad regenerativa promovida por variados mecanismos que influyen en el microambiente celular. El sistema inmunológico detecta alteraciones en el tejido intestinal y, a través de la activación de células inmunocompetentes y la secreción de citoquinas proinflamatorias, favorece la desdiferenciación de células especializadas hacia células madre para desencadenar la respuesta regenerativa. En cuanto al sistema nervioso entérico, su influencia está sujeta a modificaciones en la microbiota y los hábitos alimenticios, y se encuentra determinada en gran parte, por las células gliales entéricas y la expresión de distintos marcadores de plasticidad, que permiten limitar la lesión y reparar el tejido. Por su parte, la epigenéticamodifica la expresión genética y consecuentemente, la capacidadregenerativa intestinal, variando de acuerdo a cada paciente porla influencia de factores externos como la dieta o el estadopsicobiológico. De esta forma, la respuesta regenerativa intestinalinducida por lesiones, integra múltiples mecanismos y poseeimportantes repercusiones clínicas en cuanto a EII, disbiosise incluso tumorogénesis; conocer los mecanismos que regulanesta actividad puede sentar las bases para la creación de terapias innovadoras en el mismo ámbito(AU)


The intestinal system has an intrinsic and physiological regenerative capacity that takes place from the Lgr5+ stem cells located at the bottom of the intestinal crypts, which differentiate into secretory and absorptive progenitor cells with their specialized cells by activating intracellular signalslike Wnt, Hippo and Notch. Adverse conditions such asinjuries and tissue infections induce this regenerative activity promoted by various mechanisms that influence the cellular microenvironment. The immune system senses disturbances in the intestinal tissue and, through the activation of immunocompetent cells and the secretion of proinflammatorycytokines, favors the dedifferentiation of specialized cells intostem cells to trigger the regenerative response. Regarding theenteric nervous system, its influence is subject to modificationsin the microbiota and dietary habits, and is largely determinedby enteric glial cells and the expression of different plasticitymarkers, which enable to limit injuries and repair tissue. On the other hand, epigenetics modifies genetic expressionand, consequently, intestinal regenerative capacity, varying according to each patient due to the influence of external factors such as diet or psychobiological status. There fore, the intestinal regenerative response induced by lesions integrates multiple mechanisms and has important clinical repercussions in terms of IBD, dysbiosis, and even tumorigenesis; knowing themechanisms that regulate this activity can lay the foundations for the creation of innovative therapies in the same field (AU)


Assuntos
Humanos , Masculino , Feminino , Mucosa Intestinal
8.
Indian J Physiol Pharmacol ; 2023 Mar; 67(1): 36-43
Artigo | IMSEAR | ID: sea-223976

RESUMO

Objectives: Capsaicin, the most pungent constituent of chilli pepper (Capsicum annuum L.), is known to alter the physiological activity of the gut. Capsaicin mediates its action through a transient receptor potential vanilloid type 1 (TRPV1) channel. The action of capsaicin on gut smooth muscle varies from segment to segment in different species. The earlier studies were carried out in adult animals only, and its status in the neonate gut, which is in a development stage, is not known. Objective: Therefore, the present study was done to assess the effect of capsaicin on the large gut of neonates. Materials and Methods: In an organ bath preparation, isometric contractions were recorded from segments of dissected rat colon and rectum. The gut segments were exposed to cumulative concentrations of capsaicin (0.01 nM–3 µM) and a capsaicin-induced contractile response was observed. TRPV1 receptor antagonist capsazepine (1 µM) and a nitric oxide synthase inhibitor, L-NAME (100 µM), were used to assess their blocking effect on capsaicin-induced contractile response. Results: Capsaicin raised contractile tension in the colon and rectum of adult rats but not in neonate rats. In adult rats, capsazepine pre-treatment (1 µM) failed to block the capsaicin-induced response in the colon, but in the lower concentrations, it increased contractile tension in the rectum. Pre-application of L-NAME (100 µM) potentiated capsaicin-induced response in the adult rectum and neonate’s colon but had no effect in the neonate rectum and adult colon. Capsaicin with a low concentration (0.01 nM–0.01 µM) increased contractile frequency in both the colon and rectum of adult rats. However, the effect of capsaicin on frequency was abolished at higher concentrations (0.01 µM–3 µM). A capsaicin-evoked change in contractile frequency in adult rats was blocked by capsazepine and L-NAME. At lower concentrations (0.01 nM–0.01 µM), capsaicin did not show any change in frequency in the neonatal colon, while a decrease in contractile frequency was observed with the higher concentrations (0.1 µM–3 µM) of capsaicin. In neonates, capsazepine pre-treatment produced changes in frequency for both the colon and rectum. However, pre-application of L-NAME decreased frequency in the neonate rectum but not in the colon. Conclusion: Capsaicin-induced changes in contractile activity may or may not involve TRPV1 or the Nitric Oxide (NO) pathway, depending on the part of the large gut and developmental maturity.

9.
Artigo | IMSEAR | ID: sea-216074

RESUMO

Recent research has shown a strong correlation between gut dysbiosis and Alzheimer’s disease (AD). The purpose of this review is to investigate the relationship between gut dysbiosis, immune system activation, and the onset of AD and to examine current breakthroughs in microbiota-targeted AD therapeutics. A review of scientific literature was conducted to assess the correlation between gut dysbiosis and AD and the various factors associated. Gut dysbiosis produces an increase in harmful substances, such as bacterial amyloids, which makes the gut barrier and blood-brain barrier more permeable. This leads to the stimulation of immunological responses and an increase in cytokines such as interleukin-1? (IL-1?). As a result, gut dysbiosis accelerates the progression of AD. The review highlights the connection between gut dysbiosis and AD and the potential for microbiota-targeted therapies in AD treatment.

10.
Arq. gastroenterol ; 60(1): 144-154, Jan.-Mar. 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1439399

RESUMO

ABSTRACT Background: Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease, characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. Several pathways enable bidirectional communication between the central nervous system (CNS), the intestine and its microbiota, constituting the microbiota-gut-brain axis. Objective: Review the pathophysiology of AD, relate it to the microbiota-gut-brain axis and discuss the possibility of using probiotics in the treatment and/or prevention of this disease. Methods: Search of articles from the PubMed database published in the last 5 years (2017 to 2022) structure the narrative review. Results: The composition of the gut microbiota influences the CNS, resulting in changes in host behavior and may be related to the development of neurodegenerative diseases. Some metabolites produced by the intestinal microbiota, such as trimethylamine N-oxide (TMAO), may be involved in the pathogenesis of AD, while other compounds produced by the microbiota during the fermentation of food in the intestine, such as D-glutamate and fatty acids short chain, are beneficial in cognitive function. The consumption of live microorganisms beneficial to health, known as probiotics, has been tested in laboratory animals and humans to evaluate the effect on AD. Conclusion: Although there are few clinical trials evaluating the effect of probiotic consumption in humans with AD, the results to date indicate a beneficial contribution of the use of probiotics in this disease.


RESUMO Contexto: A doença de Alzheimer (DA) é uma doença neurodegenerativa progressiva e irreversível, caracterizada pelo acúmulo de placas amiloides e emaranhados neurofibrilares no cérebro. Diversas vias possibilitam uma comunicação bidirecional entre o sistema nervoso central (SNC), o intestino e sua microbiota, constituindo o eixo microbiota-intestino-cérebro. Objetivo Revisar a fisiopatogenia da DA, relacioná-la com o eixo microbiota-intestino-cérebro e discutir sobre a possibilidade do uso de probióticos no tratamento e/ou prevenção desta doença. Métodos: Busca de artigos da base de dados PubMed publicados nos últimos 5 anos (2017 a 2022) para estruturar a revisão narrativa. Resultados A composição da microbiota intestinal influencia o SNC, resultando em modificações no comportamento do hospedeiro e pode estar relacionada com o desenvolvimento de doenças neurodegenerativas. Alguns metabólitos produzidos pela microbiota intestinal, como o N-óxido de trimetilamina (TMAO), podem estar envolvidos na patogênese da DA, enquanto, outros compostos produzidos pela microbiota durante a fermentação de alimentos no intestino, como o D-glutamato e os ácidos graxos de cadeia curta, são profícuos na função cognitiva. O consumo de microrganismos vivos benéficos à saúde, os probióticos, tem sido testado em animais de laboratório e humanos para avaliação do efeito na DA. Conclusão Embora haja poucos ensaios clínicos que avaliem o efeito do consumo de probióticos em humanos com DA, os resultados até o momento indicam uma contribuição benéfica do uso de probióticos nesta doença.

11.
J. pediatr. (Rio J.) ; 99(1): 11-16, Jan.-Feb. 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1422014

RESUMO

Abstract Objective: In this article, the author aims to discuss and review the relationship between gut microbiota and Tourette syndrome, and whether the change in gut microbiota can affect the severity of Tourette syndrome. Sources: Literature from PubMed, Google Scholar, and China National Knowledge Infrastructure was mainly reviewed. Both original studies and review articles were discussed. The articles were required to be published as of May 2022. Summary of the findings: Current studies on the gut microbiome have found that the gut microbiome and brain seem to interact. It is named the brain-gut-axis. The relationship between the brain-gut axis and neurological and psychiatric disorders has been a topic of intense interest. Tourette syndrome is a chronic neurological disease that seriously affects the quality of life of children, and there appears to be an increase in Ruminococcaceae and Bacteroides in the gut of patients with Tourette syndrome. After clinical observation and animal experiments, there appear to be particular gut microbiota changes in Tourette syndrome. It provides a new possible idea for the treatment of Tourette syndrome. Probiotics and fecal microbial transplantation have been tried to treat Tourette syndrome, especially Tourette syndrome which is not sensitive to drugs, and some results have been achieved. Conclusions: The relationship between gut microbiota and Tourette syndrome and how to alleviate Tourette syndrome by improving gut microbiota are new topics, more in-depth and larger sample size research is still needed.

12.
Interacciones ; 9: e327, ene. 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1517834

RESUMO

Background: Psychological stress is a reaction to an unexpected situation that favours adaptation and response to the event. However, when psychological stress is chronic or very intense, it can induce changes in various systems and tissues, causing diseases or aggravating existing ones. Objective: To briefly analyse the pathophysiological conditions caused by psychological stress. Method: A narrative review of the scientific literature on pathophysiological conditions as a consequence of psychological stress was performed. Results: Psychological stress can induce various conditions at the gastrointestinal, immune and cardiovascular levels. This is mainly due to the neurobiological and endocrine response because when faced with a stressful stimulus, a deregulated release of glucocorticoids and catecholamines is generated, altering the normal physiology of the organism. Gastrointestinal disorders are mainly due to goblet cell dysfunction, resulting in intestinal hyperpermeability, inflammation and infection. Changes at the immune level lead to an increase in inflammatory responses but a decrease in the protective activities of the immune system. Finally, cardiovascular conditions include atherosclerosis, increased blood pressure and stroke. Conclusion: Psychological stress can induce real physiological pathologies and, in some cases, fatal ones. Some of the molecular mechanisms involved in these pathologies have already been studied and identified. Knowledge of these molecular mechanisms can help clinicians and therapists to improve the treatment and therapy of patients.


Introducción: El estrés psicológico es una respuesta a una situación inesperada que favorece la adaptación y la respuesta ante dicho evento. Sin embargo, cuando el estrés psicológico es crónico o muy intenso, se pueden desencadenar afecciones en diversos sistemas y tejidos, generando enfermedades o empeorando las ya existentes. Objetivo: Analizar brevemente las afecciones fisiopatológicas causadas por el estrés psicológico. Método: Se realizó una revisión narrativa con la literatura científica sobre las afecciones fisiopatológicas debidas al estrés psicológico. Resultados: El estrés psicológico puede desencadenar diversas afecciones a nivel gastrointestinal, inmunitario y cardiovascular. Esto se debe principalmente a la respuesta neurobiológica y endócrina, ya que ante estímulos estresores, se genera una liberación desregulada de glucocorticoides y catecolaminas que alteran la fisiología normal del organismo. Las afecciones a nivel gastrointestinal se deben principalmente a la disfunción de las células caliciformes, dando como consecuencia hiperpermeabilidad intestinal, inflamación e infecciones. Las alteraciones a nivel inmunitario generan un aumento en las respuestas inflamatorias pero una reducción en las actividades protectoras del sistema inmune. Por último, las afecciones cardiovasculares incluyen ateroesclerosis, aumento de la presión arterial y derrames cerebrales, entre otros. Conclusión: El estrés psicológico puede causar patologías fisiológicas reales y, en algunos casos, mortales. Algunos de los mecanismos moleculares implicados en estas patologías ya han sido estudiados y establecidos. Conocer estos mecanismos moleculares puede ayudar a los médicos y terapeutas a mejorar el tratamiento y la terapia del paciente.

13.
Adv Rheumatol ; 63: 24, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1447147

RESUMO

Abstract Introduction The relationship between humidity and systemic lupus erythematosus (SLE) has yielded inconsistent results in prior research, while the effects of humidity on lupus in animal experiments and its underlying mechanism remain inadequately explored. Methods The present study aimed to investigate the impact of high humidity (80 ± 5%) on lupus using female and male MRL/lpr mice, with a particular focus on elucidating the role of gut microbiota in this process. To this end, fecal microbiota transplantation (FMT) was employed to transfer the gut microbiota of MRL/lpr mice under high humidity to blank MRL/lpr mice under normal humidity (50 ± 5%), allowing for an assessment of the effect of FMT on lupus. Results The study revealed that high humidity exacerbated lupus indices (serum anti-dsDNA, ANA, IL-6, and IFN- g, and renal pathology) in female MRL/lpr mice but had no significant effect on male MRL/lpr mice. The aggravation of lupus caused by high humidity may be attributed to the increased abundances of the Rikenella, Romboutsia, Turicibacter, and Escherichia-Shigella genera in female MRL/lpr mice. Furthermore, FMT also exacerbated lupus in female MRL/lpr mice but not in male MRL/lpr mice. Conclusion In summary, this study has demonstrated that high humidity exacerbated lupus by modulating gut microbiota in female MRL/lpr mice. The findings underscore the importance of considering environmental factors and gut microbiota in the development and progression of lupus, particularly among female patients.

14.
Braz. j. infect. dis ; 27(3): 102776, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1447676

RESUMO

Abstract Cryptosporidiosis is a waterborne protozoal infection that may cause life-threatening diarrhea in undernourished children living in unsanitary environments. The aim of this study is to identify new biomarkers that may be related to gut-brain axis dysfunction in children suffering from the malnutrition/infection vicious cycle is necessary for better intervention strategies. Myeloperoxidase (MPO) is a well-known neutrophil-related tissue factor released during enteropathy that could drive gut-derived brain inflammation. We utilized a model of environmental enteropathy in C57BL/6 weanling mice challenged by Cryptosporidium and undernutrition. Mice were fed a 2%-Protein Diet (dPD) for eight days and orally infected with 107-C. parvum oocysts. C. parvum oocyst shedding was assessed from fecal and ileal-extracted genomic DNA by qRT-PCR. Ileal histopathology scores were assessed for intestinal inflammation. Prefrontal cortex samples were snap-frozen for MPO ELISA assay and NF-kb immunostaining. Blood samples were drawn by cardiac puncture after anesthesia and sera were obtained for serum amyloid A (SAA) and MPO analysis. Brain samples were also obtained for Iba-1 prefrontal cortex immunostaining. C. parvum-infected mice showed sustained stool oocyst shedding for six days post-infection and increased fecal MPO and inflammation scores. dPD and cryptosporidiosis led to impaired growth and weight gain. C. parvum-infected dPD mice showed increased serum MPO and serum amyloid A (SAA) levels, markers of systemic inflammation. dPD-infected mice showed greater MPO, NF-kB expression, and Iba-1 immunolabeling in the prefrontal cortex, an important brain region involved in executive function. Our findings suggest MPO as a potential biomarker for intestinal-brain axis dysfunction due to environmental enteropathy.

15.
Mem. Inst. Oswaldo Cruz ; 118: e220197, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1430844

RESUMO

Diabetes is a chronic metabolic disease caused by a reduction in the production and/or action of insulin, with consequent development of hyperglycemia. Diabetic patients, especially those who develop neuropathy, presented dysbiosis, with an increase in the proportion of pathogenic bacteria and a decrease in the butyrate-producing bacteria. Due to this dysbiosis, diabetic patients presented a weakness of the intestinal permeability barrier and high bacterial product translocation to the bloodstream, in parallel to a high circulating levels of pro-inflammatory cytokines such as TNF-α. In this context, we propose here that dysbiosis-induced increased systemic levels of bacterial products, like lipopolysaccharide (LPS), leads to an increase in the production of pro-inflammatory cytokines, including TNF-α, by Schwann cells and spinal cord of diabetics, being crucial for the development of neuropathy.

16.
Chinese Journal of Rheumatology ; (12): 309-314,C5-1-C5-3, 2023.
Artigo em Chinês | WPRIM | ID: wpr-992934

RESUMO

Objective:To explore the characteristics of intestinal microbiota in patients with systemic lupus erythematosus (SLE), and further explore the relationship between microbiota and CD4 +T lymphocyte subsets and disease activity. Methods:Fecal samples were collected from 96 patients with SLE, and 96 sex- and age-matched healthy controls (HCs). The gut microbiota were investigated via 16s rRNA sequencing. Flow cytometry was used to detect peripheral CD4 +T lymphocyte subsets of Th1, Th2, Th17 and Treg cells. Indicators of disease activity such as erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), complement C3 and C4, Systemic lupus erythematosus disease activity index(SLEDAI) for each patient were recorded. Differential abundance analysis was carried out using the edgeR algorithm. The Wilcoxon rank-sum test was used to compare alpha diversity indices, bacterial abundances, and the F/B ratio between groups. R (version 4.0.1) was used for comparative statistics, and Pearson′s correlation analysis was used to assess the correlations between the relative abundances of bacterial genera and serum levels of ESR, CRP, C3 and C4 in the samples. Results:The alpha estimators of richness (ACE and Chao 1) were significantly reduced in SLE feces samples compared with those of HCs ( P<0.01). Bacterial diversity estimators, including the Shannon ( P<0.01) and Simpson′s ( P<0.01) indices, were also significantly lower in SLE. Significant differences in gut microbiota composition between SLE and HCs were found using the edgeR algorithm. Compared with HC, 24 species of bacteria were significantly different in SLE patients at the genus level ( P<0.05). Moreover, there was a significant positive correlation between CRP and Coprococcus ( r=0.30, P=0.014), C4 and Corynebacterium ( r=0.31, P=0.013) and Faecalibacterium( r=0.25, P=0.048), Hemoglobin and Morganella( r=0.41, P=0.001), as well as SLIDA and Corynebacterium( r=0.25, P=0.047). In terms of lymphocyte subsets, there was significant positive correlation between B cells, Treg cells and Eubacterium eligens group, as well as CD8 +T, CD4 +T, NK cells and Corynebacterium. In additional, Th1 was positively correlated with Shigella Escherichia coli ( r=0.52, P=0.008), and Th2 was positively correlated with Dielma ( r=0.51, P<0.001). Conclusion:The abundance and diversity of intestinal flora in SLE patients were significantly reduced, and the differentially expressed bacteria were closely related to the CD4 +T lymphocyte subsets and disease activity indicators of patients.

17.
Chinese Journal of Pharmacology and Toxicology ; (6): 556-557, 2023.
Artigo em Chinês | WPRIM | ID: wpr-992225

RESUMO

OBJECTIVE AMPK activator,act as exer-cise mimetics,effective in preventing or ameliorating met-abolic diseases,including obesity and diabetes.Systemic activating of AMPK represents an important therapeutic strategy to treat metabolic diseases.However,whether far-infrared(FIR)hyperthermia therapy could be used as exercise mimetic to realize wide-ranging metabolic regu-lation,and its underling mechanisms remain unclear.METHODS The mice were subjected to hyperthermia in the FIR chamber(30±1)℃for 14 d.Exercise endurance was determined using a treadmill.Blood flow were mea-sured by the laser speckle contrast imaging.Combina-tion of microbiomic and metabolomic analysis,diversity of microbiota and metabolic profiling in muscle were detected.The microbiota disorder model via treatment with different cocktails of antibiotics(ABX).RESULTS The material characterization shows that the graphene synthesized by chemical vapour deposition(CVD)is dif-ferent from carbon fi ber,with single-layer structure and high electrothermal transform efficiency.The emission spectra generated by graphene-FIR device would maxi-mize matching those adsorbed by tissues(≈8.0 μm).Gra-phene-FIR improves core and epidermal temperature,and increases blood flow in femoral muscle and abdo-men.The diversity of gut microbiota was increased by graphene-FIR exposure.Graphene-FIR reduced the bac-teroidetes/firmicutes(B/F)ratio and increased the abun-dance of short-chain fatty acids(SCFA)-producing bac-teria,including Allobaculum,Blautia and Anaerostipes.Additionally,graphene-FIR stimulated the expression of SCFAs-sensing receptor(GPR 43),p-AMPK Thr172 and GLUT4,and increased the AMP/ATP ratio,thus enhanc-ing muscle glucose uptake.Metabolomic analyses revealed the significant changes in 25 metabolites,with twenty increased(eg.creatinine and phosphate)and five decreased(eg.lactic acid),and the marked impact of five metabolic pathways,including galactose metabo-lism,glycolysis,gluconeogenesis,fatty acid biosynthesis,butanoate metabolism,pyruvate metabolism.Further-more,a microbiota disorder model also demonstrates that the graphene-FIR effectively restore the exercise endurance with enhanced p-AMPK and GLUT4.CON-CLUSION Our results provide convincing evidence that graphene-based FIR therapy promoted exercise capacity and glucose metabolism via AMPK in gut-muscle axis.These novel insights into graphene-FIR therapy suggest a potential as an exercise mimetic for the treatment of metabolic disease in clinical.

18.
Chinese Journal of Pharmacology and Toxicology ; (6): 521-521, 2023.
Artigo em Chinês | WPRIM | ID: wpr-992201

RESUMO

OBJECTIVE Alzheimer's disease(AD)is a progressive neurological disease.Given the important role of gut microbiota composition in AD pathology,the observed perturbation in the microbiota composition and diversity may serve as the mechanisms underlying age-dependent APP/PS1/tau triple-transgenic mouse(3×Tg-AD)mice amyloid deposition and memory deficits.Here-in,we intended to investigate the gut microbiota and as-sessed its relationship with the triggering and develop-ment of cognitive impairment of AD.METHODS This study involves the comparative assessment of spatial learning,amyloid β-protein(Aβ)accumulation,and fecal microbiota alterations in 3×Tg-AD mice from three age groups:AD asymptomatic stage(3 m),presymptomatic stage(6 m),and the symptomatic stage of AD(9 m).RE-SULTS We demonstrate that spatial memory deficits,brain Aβ accumulation,and weight gain in 3×Tg-AD mice gradually appear after 6 months of age.However,the total gut bacterial counts underwent changes from 3 to 6 months of age and were further altered at 9 months of age.Importantly,changes in gut bacteria abundance of Desulfobacterota and Actinobacteriota phylain 6-month-old mice preceded apparent spatial memory deficits.CONCLUSION Changes in the gut microbial community are one of the mechanisms of early AD pathology.

19.
Chinese Journal of Behavioral Medicine and Brain Science ; (12): 289-295, 2023.
Artigo em Chinês | WPRIM | ID: wpr-992091

RESUMO

Objective:To investigate the effect of early intervention with electroacupuncture (EA) on the gut microbiota in a mouse model of post-traumatic stress disorder(PTSD).Methods:Totally 32 C57BL/6 mice were randomly assigned to the following 4 groups ( n=8 for each group): Control group, EA group, PTSD group and PTSD+ EA group.After 7 days acclimation, mice in the PTSD group and PTSD+ EA group were subjected to modified single prolonged stress (mSPS). Mice in the EA group and PTSD+ EA group received EA (2/15 Hz, 1 mA, dilatational wave, 30 min/d) on "Baihui" for 7 days. Mice in the Control group and PTSD group received false stimulation (stimulated the same acupiont without electricity) for 7 days. Seven days after the last stimulation, elevated plus maze test and fear conditioning test were conducted to observe the effect of EA on PTSD-like behavior of mice. At the same time, feces of the mice were collected for gut microbiota detection by 16S rRNA sequencing.SPSS 19.0 was used for statistical analysis.One-way ANOVA was used for multiple group comparison and Bonferrani test was done for further pairwise comparision. Results:(1) There were statistically differences in the open arm activity time of the elevated plus maze test and the immobility time in contextual and cued fear conditioning test among the four groups ( F=6.93, 5.26, 14.51, all P<0.01). In the elevated plus maze test, mice in PTSD group ((60.17±15.52) s) showed significant less time in the open arms than mice in Control group((96.37±14.62) s) and PTSD+ EA group ((86.89±15.02) s) (both P<0.05). In the fear conditioning test, mice in PTSD group ((121.99±29.67) s, (130.82±29.11) s) showed significant increased immobility time both in contextual and cued fear conditioning tests than mice in Control group((74.50±26.65) s, (39.50±23.52) s) and PTSD+ EA group ((76.77±22.60) s, (102.17±3.39) s)(both P<0.05). (2) There were no significant differences among the four groups in the alpha diversity of gut microbiota ( F=0.79-2.45, all P>0.05). (3)Correlation analysis showed that 13 gut microbiotas were negatively correlated with the immobility time in contextual fear conditioning test, 2 gut microbiotas were positively correlated with it; 7 gut microbiotas were negatively correlated with the immobility time in cued fear conditioning test, 1 gut microbiota was positively correlated with it; 3 gut microbiotas were positively correlated with time spent in open arms of elevated plus maze test. Conclusion:Early intervention with EA can improve anxiety-fear like behaviors and gut microflora disorder in PTSD model mice.

20.
Chinese Critical Care Medicine ; (12): 329-333, 2023.
Artigo em Chinês | WPRIM | ID: wpr-992026

RESUMO

Sepsis-associated acute kidney injury (SA-AKI), as a common renal dysfunction in sepsis, has become one of the major diseases threatening human health with increasing morbidity and mortality. Based on the theory of "gut-kidney axis", the intestine and kidney have a two-way synergistic relationship in sepsis. Intestinal flora imbalance, endogenous metabolite imbalance, and impaired endothelial barrier integrity are involved in renal injury, and the increase of renal inflammatory mediators interferes with the composition of intestinal microorganisms. Therefore, understanding the intestinal-renal crosstalk mechanism of SA-AKI will help to provide a potential basis for new treatment strategies for SA-AKI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA