Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 775-788, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1010989

RESUMO

Influenza is an acute viral respiratory infection that has caused high morbidity and mortality worldwide. Influenza A virus (IAV) has been found to activate multiple programmed cell death pathways, including ferroptosis. Ferroptosis is a novel form of programmed cell death in which the accumulation of intracellular iron promotes lipid peroxidation, leading to cell death. However, little is known about how influenza viruses induce ferroptosis in the host cells. In this study, based on network pharmacology, we predicted the mechanism of action of Maxing Shigan decoction (MXSGD) in IAV-induced ferroptosis, and found that this process was related to biological processes, cellular components, molecular function and multiple signaling pathways, where the hypoxia inducible factor-1(HIF-1) signaling pathway plays a significant role. Subsequently, we constructed the mouse lung epithelial (MLE-12) cell model by IAV-infected in vitro cell experiments, and revealed that IAV infection induced cellular ferroptosis that was characterized by mitochondrial damage, increased reactive oxygen species (ROS) release, increased total iron and iron ion contents, decreased expression of ferroptosis marker gene recombinant glutathione peroxidase 4 (GPX4), increased expression of acyl-CoA synthetase long chain family member 4 (ACSL4), and enhanced activation of hypoxia inducible factor-1α (HIF-1α), induced nitric oxide synthase (iNOS) and vascular endothelial growth factor (VEGF) in the HIF-1 signaling pathway. Treatment with MXSGD effectively reduced intracellular viral load, while reducing ROS, total iron and ferrous ion contents, repairing mitochondrial results and inhibiting the expression of cellular ferroptosis and the HIF-1 signaling pathway. Finally, based on animal experiments, it was found that MXSGD effectively alleviated pulmonary congestion, edema and inflammation in IAV-infected mice, and inhibited the expression of ferroptosis-related protein and the HIF-1 signaling pathway in lung tissues.


Assuntos
Animais , Camundongos , Ferroptose , Farmacologia em Rede , Espécies Reativas de Oxigênio , Fator A de Crescimento do Endotélio Vascular , Vírus da Influenza A , Ferro , Hipóxia
2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 30-41, 2023.
Artigo em Chinês | WPRIM | ID: wpr-998160

RESUMO

ObjectiveTo investigate the analgesic effect and mechanism of Osteoking (OK) on nerve compression in lumbar disc herniation. MethodThe rat model of chronic compression of dorsal root ganglion (CCD) was established to simulate clinical lumbar disc herniation. The CCD rats were randomly divided into model group, low, medium, and high dose OK groups (1.31, 2.63, 5.25 mL·kg-1·d-1), and pregabalin group (5 mg·kg-1), with eight rats in each group. Another eight SD rats were taken as the blank group, and the same volume of normal saline was given by gavage. Behavioral tests, side effect evaluation, network analysis, Western blot, immunofluorescence, and antagonist application were used to explore the effect. ResultCompared with the blank group, the mechanical hyperalgesia threshold, thermal hyperalgesia threshold, and the expression of inflammatory factors in the spinal dorsal horn of the model group are significantly increased (P<0.01), and the related indicators of the affected foot footprints are significantly down-regulated (P<0.01). The expression of signal transducer and activator of transcription 3 (STAT3), vascular endothelial growth factor A (VEGFA), and phosphorylated extracellular regulated protein kinase (p-ERK) in microglia in the spinal dorsal horn is significantly increased in the model group (P<0.01). Compared with the model group, low, medium, and high dose OK groups can increase the mechanical hyperalgesia and thermal hyperalgesia thresholds of CCD rats (P<0.05, P<0.01) in a dose-dependent manner, improve the gait of CCD rats (P<0.05, P<0.01), and reduce the expression of inflammatory factors in the spinal dorsal horn (P<0.05, P<0.01). The expression of STAT3, VEGFA, and p-ERK in the spinal dorsal horn microglia of CCD rats is significantly decreased (P<0.05, P<0.01), and the acetic acid-induced nociceptive response in rats is effectively reduced (P<0.05, P<0.01). In addition, there is no tolerance. The results of the body mass test, organ index, forced swimming, and rotation show that OK has no obvious toxic or side effects. Further antagonist experiments show that MRS1523 and RS127445 can reverse the transient analgesic effect of OK compared with the high dose OK group (P<0.01). ConclusionOK has a good analgesic effect on the CCD model without obvious toxic side effects, and its mechanism may be related to the activation of ADORA3 and HTR2B and the inhibition of STAT3, VEGFA, p-ERK, and other elements in microglia.

3.
China Journal of Chinese Materia Medica ; (24): 3949-3959, 2021.
Artigo em Chinês | WPRIM | ID: wpr-888121

RESUMO

Qishen Yiqi Dripping Pills(QSYQ) are used clinically to treat various myocardial ischemic diseases, such as angina pectoris, myocardial infarction, and heart failure; however, the molecular mechanism of QSYQ remains unclear, and the scientific connotation of traditional Chinese medicine(TCM) compatibility has not been systematically explained. The present study attempted to screen the critical pathway of QSYQ in the treatment of myocardial ischemia by network pharmacology and verify the therapeutic efficacy with the oxygen-glucose deprivation(OGD) model, in order to reveal the molecular mechanism of QSYQ based on the critical pathway. The key targets of QSYQ were determined by active ingredient identification and target prediction, and underwent pathway enrichment analysis and functional annotation with David database to reveal the biological role and the critical pathway of QSYQ. Cell counting Kit-8(CCK-8), lactate dehydrogenase(LDH), and Western blot tests were launched on high-content active ingredients with OGD cell model to reveal the molecular mechanism of QSYQ based on the critical pathway. The results of network pharmacology indicated that QSYQ, containing 18 active ingredients and 82 key targets, could protect cardiomyocytes by regulating biological functions, such as nitric oxide biosynthesis, apoptosis, inflammation, and angiogenesis, through TNF signaling pathway, HIF-1 signaling pathway, PI3 K-Akt signaling pathway, etc. HIF-1 signaling pathway was the critical pathway. As revealed by CCK-8 and LDH tests, astragaloside Ⅳ, salvianic acid A, and ginsenoside Rg_1 in QSYQ could enhance cell viability and reduce LDH in the cell supernatant in a concentration-dependent manner(P<0.05). As demonstrated by the Western blot test, astragaloside Ⅳ significantly down-regulated the protein expression of serine/threonine-protein kinase(Akt1) and hypoxia-inducible factor 1α(HIF-1α) in the HIF-1 signaling pathway, and up-regulated the protein expression of vascular endothelial growth factor A(VEGFA). Salvianic acid A significantly down-regulated the protein expression of upstream phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha(PIK3 CA) and downstream HIF-1α of Akt1. Ginsenoside Rg_1 significantly down-regulated the expression of HIF-1α protein and up-regulated the expression of VEGFA. The therapeutic efficacy of QSYQ on myocardial ischemia was achieved by multiple targets and multiple pathways, with the HIF-1 signaling pathway serving as the critical one. The active ingredients of QSYQ could protect cardiomyocytes synergistically by regulating the targets in the HIF-1 signaling pathway to inhibit its expression.


Assuntos
Humanos , Medicamentos de Ervas Chinesas/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Isquemia Miocárdica/genética , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular
4.
Chinese Traditional and Herbal Drugs ; (24): 5767-5777, 2019.
Artigo em Chinês | WPRIM | ID: wpr-850670

RESUMO

Objective: This study was designed to explore the "multi-components, multi-targets, multi-pathways" mechanism of Qikui Granules in the treatment of diabetic nephropathy (DN) by network pharmacology, aiming to provide basis for its basic research and clinical application. Methods: The active chemical constituents of Qikui Granules and their related targets against diabetic kidney disease were searched and screened by multiple databases. The network maps of drug-disease-targets were constructed by Cytoscape software. The key targets of Qikui Granules against DN were searched by network topology. The GO and KEGG gene enrichment analysis of the key targets for treating DN were performed by using ClueGO. Results: The network analysis indicated that 67 active chemical components and 212 targets against DN were established from Qikui Granules. A total of 43 key targets were finally screened by network topology analysis. These targets were mainly enriched in 49 significant related pathways such as IL-17 signaling pathway, HIF-1 signaling pathway, TNF signaling pathway and so on. Also, 132 significant related biological processes such as neurotransmitter metabolic processes, positive regulation of small molecule metabolic processes, regulation of blood pressure and oxidoreductase activity were related. Conclusion: This study reveals that the active constituents of Qikui Granules could regulate multiple targets in the pathogenesis of diabetic nephropathy, which provides an important basis for further research on its mechanism of action against DN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA