Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Hematol., Transfus. Cell Ther. (Impr.) ; 46(1): 49-57, Jan.-Mar. 2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1557876

RESUMO

Abstract The evolutionary conserved link between coagulation and innate immunity is a biological process characterized by the thrombosis formation stimulus of immune cells and specific thrombosis-related molecules. In physiological settings, the relationship between the immune system and thrombosis facilitates the recognition of pathogens and damaged cells and inhibits pathogen proliferation. However, when deregulated, the interplay between hemostasis and innate immunity becomes a pathological process named immunothrombosis, which is at the basis of several infectious and inflammation-related thrombotic disorders, including coronavirus disease 2019 (COVID-19). In advanced stages, alterations in both coagulation and immune cell function due to extreme inflammation lead to an increase in blood coagulability, with high rates of thrombosis and mortality. Therefore, understanding underlying mechanisms in immunothrombosis has become decisive for the development of more efficient therapies to treat and prevent thrombosis in COVID-19 and in other thrombotic disorders. In this review, we outline the existing knowledge on the molecular and cellular processes involved in immunothrombosis, focusing on the role of neutrophil extracellular traps (NETs), platelets and the coagulation pathway. We also describe how the deregulation of hemostasis is associated with pathological conditions and can significantly aggravate a patient's condition, using COVID-19 as a clinical model.

2.
Clinics ; 78: 100178, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1447987

RESUMO

Abstract Objective COVID-19 is associated with an elevated risk of thromboembolism and excess mortality. Difficulties with best anticoagulation practices and their implementation motivated the current analysis of COVID-19 patients who developed Venous Thromboembolism (VTE). Method This is a post-hoc analysis of a COVID-19 cohort, described in an economic study already published. The authors analyzed a subset of patients with confirmed VTE. We described the characteristics of the cohort, such as demographics, clinical status, and laboratory results. We tested differences amid two subgroups of patients, those with VTE or not, with the competitive risk Fine and Gray model. Results Out of 3186 adult patients with COVID-19, 245 (7.7%) were diagnosed with VTE, 174 (5.4%) of them during admission to the hospital. Four (2.3% of these 174) did not receive prophylactic anticoagulation and 19 (11%) discontinued anticoagulation for at least 3 days, resulting in 170 analyzed. During the first week of hospitalization, the laboratory most altered results were C-reactive protein and D-dimer. Patients with VTE were more critical, had a higher mortality rate, worse SOFA score, and, on average, 50% longer hospital stay. Conclusion Proven VTE incidence in this severe COVID-19 cohort was 7.7%, despite 87% of them complying completely with VTE prophylaxis. The clinician must be aware of the diagnosis of VTE in COVID-19, even in patients receiving proper prophylaxis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA