Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Electron. j. biotechnol ; 53: 71-79, Sep.2021. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1451302

RESUMO

BACKGROUND The extracellular expression of enzymes in a secretion host such as Bacillus subtilis is a useful strategy in reducing the cost of downstream processing of industrial enzymes. Here, we present the first report of the successful extracellular expression in Bacillus subtilis WB800 of Geobacillus stearothermophilus lipase (T1.2RQ), a novel industriallydesirable thermostable lipolytic enzyme which has an excellent hydrolytic and transesterification activity. Signal peptides of a-amylase, extracellular protease, and lipase A, as well as two different promoters, were used in the secretion and expression of lipase T1.2RQ. RESULTS Lipase activity assay using p-nitrophenyl laurate showed that all three signal peptides directed the secretion of lipase T1.2RQ into the extracellular medium. The signal peptide of lipase A, resulted in the highest extracellular yield of 5.6 U/ml, which corresponds to a 6-fold increase over the parent Bacillus subtilis WB800 strain. SDS-PAGE and zymogram analysis confirmed that lipase T1.2RQ was correctly processed and secreted in its original size of 44 kDa. A comparison of the expression levels of lipase T1.2RQ in rich medium and minimal media showed that the enzyme was better expressed in rich media, with up to an 8-fold higher yield over minimal media. An attempt to further increase the lipase expression level by promoter optimization showed that, contrary to expectation, the optimized promoter exhibited similar expression levels as the original one, suggesting the need for the optimization of downstream factors. CONCLUSIONS The successful extracellular secretion of lipase T1.2RQ in Bacillus subtilis represents a remarkable feat in the industrial-scale production of this enzyme


Assuntos
Geobacillus stearothermophilus/metabolismo , Geobacillus stearothermophilus/química , Bacillus subtilis/metabolismo , Bacillus subtilis/química , Geobacillus stearothermophilus/isolamento & purificação , Geobacillus stearothermophilus/genética , Bacillus subtilis/isolamento & purificação , Bacillus subtilis/genética , Lipase/química
2.
Electron. j. biotechnol ; 39: 91-97, may. 2019. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1052260

RESUMO

BACKGROUND: Lipases are extensively exploited in lots of industrial fields; cold-adapted lipases with alkali-resistance are especially desired in detergent industry. Penicillium cyclopium lipase I (PCL) might be suitable for applications of detergent industry due to its high catalytic efficiency at low temperature and relatively good alkali stability. In this study, to better meet the requirements, the alkali stability of PCL was further improved via directed evolution with error-prone PCR. RESULTS: The mutant PCL (N157F) with an improved alkali stability was selected based on a high-throughput activity assay. After incubating at pH 11.0 for 120 min, N157F retained 70% of its initial activity, which was 23% higher than that of wild type PCL. Combined with the three-dimensional structure analysis, N157F exhibited an improved alkali stability under the high pH condition due to the interactions of hydrophilicity and ß-strand propensity. Conclusions: This work provided the theoretical foundation and preliminary data for improving alkali stability of PCL to meet the industrial requirements, which is also beneficial to improving alkali-tolerance ability of other industrial enzymes via molecular modification.


Assuntos
Penicillium/enzimologia , Estabilidade Enzimática , Indústria de Detergentes , Lipase/metabolismo , Penicillium/isolamento & purificação , Penicillium/genética , Reação em Cadeia da Polimerase/métodos , Temperatura Baixa , Álcalis , Biocatálise , Interações Hidrofóbicas e Hidrofílicas , Concentração de Íons de Hidrogênio , Lipase/isolamento & purificação , Lipase/genética , Mutação
3.
Chinese Journal of Biotechnology ; (12): 1806-1818, 2019.
Artigo em Chinês | WPRIM | ID: wpr-771751

RESUMO

Industrial enzymes are the "chip" of modern bio-industries, supporting tens- and hundreds-fold of downstream industries development. Elucidating the relationships between enzyme structures and functions is fundamental for industrial applications. Recently, with the advanced developments of protein crystallization and computational simulation technologies, the structure-function relationships have been extensively studied, making the rational design and de novo design become possible. This paper reviews the progress of structure-function relationships of industrial enzymes and applications, and address future developments.


Assuntos
Biocatálise , Biotecnologia , Enzimas , Química , Genética , Metabolismo , Engenharia Metabólica , Engenharia de Proteínas , Relação Estrutura-Atividade
4.
Electron. j. biotechnol ; 18(4): 314-319, July 2015. graf, tab
Artigo em Inglês | LILACS | ID: lil-757870

RESUMO

Background β-Glucosidases catalyze the hydrolysis of cellobiose and cellodextrins, releasing glucose as the main product. This enzyme is used in the food, pharmaceutical, and biofuel industries. The aim of this work is to improve the β-glucosidase production by the fungus Lichtheimia ramosa by solid-state fermentation (SSF) using various agroindustrial residues and to evaluate the catalytic properties of this enzyme. Results A high production of β-glucosidase, about 274 U/g of dry substrate (or 27.4 U/mL), was obtained by cultivating the fungus on wheat bran with 65% of initial substrate moisture, at 96 h of incubation at 35°C. The enzymatic extract also exhibited carboxymethylcellulase (CMCase), xylanase, and β-xylosidase activities. The optimal activity of β-glucosidase was observed at pH 5.5 and 65°C and was stable over a pH range of 3.5-10.5. The enzyme maintained its activity (about 98% residual activity) after 1 h at 55°C. The enzyme was subject to reversible competitive inhibition with glucose and showed high catalytic activity in solutions containing up to 10% of ethanol. Conclusions β-Glucosidase characteristics associated with its ability to hydrolyze cellobiose, underscore the utility of this enzyme in diverse industrial processes.


Assuntos
beta-Glucosidase/metabolismo , Mucorales/enzimologia , Temperatura , Celulases , Celulases/biossíntese , Agroindústria , Biocatálise , Fermentação , Concentração de Íons de Hidrogênio , Resíduos Industriais
5.
Br Biotechnol J ; 2014 Feb; 4(2): 173-184
Artigo em Inglês | IMSEAR | ID: sea-162427

RESUMO

Aim: A study was made to examine the kinship between the seasonal distribution of actinobacteria and the physico-chemical properties of the mangrove sediments of Nizampatnam and Coringa located along the South East coast of Andhra Pradesh, India. Place and Duration of Study: Department of Botany and Microbiology, between April 2010 to February 2011. Methodology: Seasonal enumeration of actinobacteria from two different stations 1 (Nizampatnam) and 2 (Coringa) accorded by four different pre-treatments of soil sediments followed by plating onto three different media showed high incidence of actinobacteria in the month of February and least in December. Pretreatment with calcium carbonate and plating on starch casein agar yielded maximum number of actinobacteria. The strains were identified based on the morphological characteristics such as aerial mycelium, substrate mycelium, diffusible pigments and micro morphological features. Results: The present investigation revealed that majority of the mangrove actinobacteria 69%) belongs to Streptomyces spp. Among the 55 isolates screened for antimicrobial compounds, 28 were found to be potential producers. The isolates could also produce commercially important enzymes such as L-asparaginase, cellulase and amylase. In addition the statistical study also revealed that positive correlation between the distribution of the actinomycetes and influence of physico-chemical parameters and the organic matter of the soil. Conclusion: Our study revealed that the unexplored regions like Nizampatnam and Coringa mangrove ecosystems are proved as potential sites for antimicrobial and industrial enzyme producing actinobacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA