Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Electron. j. biotechnol ; 10(3): 452-467, July 2007. tab
Artigo em Inglês | LILACS | ID: lil-640493

RESUMO

Tobacco is the most commonly used plant for expression of transgenes from a variety of organisms, because it is easily grown and transformed, it provides abundant amounts of fresh tissue and has a well-established cell culture system. Many bacterial proteins involved in the synthesis of commercial products are currently engineered for production in tobacco. Bacterial enzymes synthesized in tobacco can enhance protection against abiotic stresses and diseases, and provide a system to test applied strategies such as phytoremediation. Examples of bacterial gene expression in tobacco include production of antigen proteins from several human bacterial pathogens as vaccines, bacterial proteins for enhancing resistance against insects, pathogens and herbicides, and bacterial enzymes for the production of polymers, sugars, and bioethanol. Further improvements in the expression of recombinant proteins and their recovery from tobacco will enhance production and commercial use of these proteins. This review highlights the dynamic use of tobacco in bacterial protein production by examining the most relevant research in this field.

2.
Neotrop. entomol ; 33(1): 51-56, Jan.-Feb. 2004. ilus
Artigo em Inglês | LILACS | ID: lil-512647

RESUMO

Este estudo teve por objetivos observar o desenvolvimento externo de Metarhizium anisopliae e Beauveria bassiana em operários e soldados de Corniternes cumulans (Kollar) e comparar duas técnicas de fixação de insetos: secagem até ponto crítico e desidratação com dessecador. Utilizaramse operários e soldados dos cupins inoculados com B. bassiana (447) e M. anisopliae (1037). Após ainoculação os insetos foram mantidos a 25 ± 0,5°C. Para as observações amostras das duas castas foram removidas 0, 6, 12, 24, 48, 72, 96, 120, 144 e 168h após a inoculação. A germinação dos conídios de M. anisopliae e B. bassiana ocorreu em várias regiões do corpo dos insetos principalmente entre 6h e 12h após a inoculação e a penetração ocorreu após 12h e 24h. Vários pontos de penetração originaramse de um único tubo germinativo. A colonização do hospedeiro pelos dois fungos ocorreu entre 24h e 72h sendo que a maioria dos insetos (>80%) morreu entre 48h e 72h após a inoculação para B. bassiana,e 72h e 96h, para M. anisopliae. A conidiogênese iniciou-se entre 72h e 96h para B. bassiana e entre 96h e 120h para M. anisopliae. A conidiogênese para B. bassiana iniciou-se mais cedo provavelmente por ter este fungo/isolado maior velocidade de colonização do inseto. Este fator e a existência de vários pontos de penetração, para um mesmo tubo germinativo, podem explicar a maior virulência dos isolados. A secagem até ponto crítico foi a técnica de fixação que melhor preservou as estruturas do patógeno e dos insetos.


The objectives of this study were to observe the external development of Metarhizium anisopliae and Beauveria bassiana on workers and soldiers of Cornitermes cumulans (Kollar) and toestablish comparisons between the insect fixation techniques known as critical point and desiccator. Termite workers and soldiers inoculated with B. bassiana (447) and M. anisopliae (1037) were utilized. After inoculation, the insects were left at 25±0.5°C. In order to make observations, samples from both castes were removed at 0, 6, 12, 24, 48, 72, 96, 120, 144, and 168h after inoculation. The external development of M. anisopliae and B. bassiana conidia on the termite C. cumulans showed that M. anisopliae and B. bassiana conidial germination occurred on several regions of the termites body mainly between 6h and12h and penetration mainly between 12h and 24h after fungal application. Several penetration points were observed originating from the same germ tube. Colonization of the host by M. anisopliae occurred between 24h and 72h, and most insects died between 72h and 96h. Conidiogenesis began between 96h and 120h with the peak between 144h and 166h for M. anisopliae and between 120h and 144h for B. bassiana. Thus, only conidiogenesis for B. bassiana started earlier, probably because this fungus/isolate shows a higher insect colonization speed. This factor, in addition to multiple penetration points for the same germination tube, could explain the higher virulence of the isolates. The critical point fixation technique provided the best preservation of structures in both the pathogen and the insect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA