Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
The Korean Journal of Physiology and Pharmacology ; : 697-703, 2018.
Artigo em Inglês | WPRIM | ID: wpr-727855

RESUMO

Myoblast fusion depends on mitochondrial integrity and intracellular Ca²⁺ signaling regulated by various ion channels. In this study, we investigated the ionic currents associated with [Ca²⁺]i regulation in normal and mitochondrial DNA-depleted (ρ0) L6 myoblasts. The ρ0 myoblasts showed impaired myotube formation. The inwardly rectifying K⁺ current (I(Kir)) was largely decreased with reduced expression of KIR2.1, whereas the voltage-operated Ca²⁺ channel and Ca²⁺-activated K⁺ channel currents were intact. Sustained inhibition of mitochondrial electron transport by antimycin A treatment (24 h) also decreased the I(Kir). The ρ0 myoblasts showed depolarized resting membrane potential and higher basal [Ca²⁺]ᵢ. Our results demonstrated the specific downregulation of I(Kir) by dysfunctional mitochondria. The resultant depolarization and altered Ca²⁺ signaling might be associated with impaired myoblast fusion in ρ0 myoblasts.


Assuntos
Antimicina A , Regulação para Baixo , Transporte de Elétrons , Canais Iônicos , Potenciais da Membrana , Mitocôndrias , Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Mioblastos , Fosforilação Oxidativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA