Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Investigative Magnetic Resonance Imaging ; : 212-217, 2015.
Artigo em Inglês | WPRIM | ID: wpr-88088

RESUMO

PURPOSE: For a single time-point hyperpolarized 13C magnetic resonance spectroscopy imaging (MRSI) of animal models, scan-time window after injecting substrates is critical in terms of signal-to-noise ratio (SNR) of downstream metabolites. Prescans of time-resolved magnetic resonance spectroscopy (MRS) can be performed to determine the scan-time window. In this study, based on two-site exchange model, protocol-specific simulation approaches were developed for 13C MRSI and the optimal scan-time window was determined to maximize the SNR of downstream metabolites. MATERIALS AND METHODS: The arterial input function and conversion rate constant from injected substrates (pyruvate) to downstream metabolite (lactate) were precalibrated, based on pre-scans of time-resolved MRS. MRSI was simulated using twosite exchange model with considerations of scan parameters of MRSI. Optimal scantime window for mapping lactate was chosen from simulated lactate intensity maps. The performance was validated by multiple in vivo experiments of BALB/C nude mice with MDA-MB-231 breast tumor cells. As a comparison, MRSI were performed with other scan-time windows simply chosen from the lactate signal intensities of prescan time-resolved MRS. RESULTS: The optimal scan timing for our animal models was determined by simulation, and was found to be 15 s after injection of the pyruvate. Compared to the simple approach, we observed that the lactate peak signal to noise ratio (PSNR) was increased by 230%. CONCLUSIONS: Optimal scan timing to measure downstream metabolites using hyperpolarized 13C MRSI can be determined by the proposed protocol-specific simulation approaches.


Assuntos
Animais , Camundongos , Neoplasias da Mama , Ácido Láctico , Espectroscopia de Ressonância Magnética , Camundongos Nus , Modelos Animais , Ácido Pirúvico , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA