Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Clinical and Experimental Otorhinolaryngology ; : 77-84, 2017.
Artigo em Inglês | WPRIM | ID: wpr-66658

RESUMO

OBJECTIVES: Excessive production of mucus results in plugging of the airway tract, which can increase morbidity and mortality in affected patients. In patients with diabetes, inflammatory airway disease appears with more frequent relapse and longer duration of symptoms. However, the effects of high glucose (HG) on the secretion of mucin in inflammatory respiratory diseases are not clear. Therefore, this study was conducted in order to investigate the effect and the brief signaling pathway of HG on MUC5B expression in human airway epithelial cells. METHODS: The effect and signaling pathway of HG on MUC5B expression were investigated using reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassay, and immunoblot analysis with specific inhibitors and small interfering RNA. RESULTS: HG increased MUC5B expression and epidermal growth factor receptor (EGFR) expression, and activated the phosphorylation of EGFR and p38 mitogen-activated protein kinase (MAPK). Pretreatment with EGFR inhibitor significantly attenuated the HG-induced phosphorylation of p38 MAPK, and pretreatments with p38 inhibitor or EGFR inhibitor significantly attenuated HG-induced MUC5B expression. In addition, knockdown of p38 MAPK by p38 MAPK siRNA significantly blocked HG-induced MUC5B expression. CONCLUSION: These findings suggest that HG induces MUC5B expression via the sequential activations of the EGFR/p38 MAPK signaling pathway in human airway epithelial cells.


Assuntos
Humanos , Células Epiteliais , Glucose , Técnicas Imunoenzimáticas , Mortalidade , Mucinas , Muco , Proteínas Quinases p38 Ativadas por Mitógeno , Fosforilação , Proteínas Quinases , Reação em Cadeia da Polimerase em Tempo Real , Receptores ErbB , Recidiva , RNA Interferente Pequeno
2.
Clinical and Experimental Otorhinolaryngology ; : 198-204, 2014.
Artigo em Inglês | WPRIM | ID: wpr-93544

RESUMO

OBJECTIVES: Delphinidin is one of the anthocyanidins. It is believed to have anti-inflammatory property including antioxidant, antiangiogenic, and anti-cancer properties. However, the anti-inflammatory effect of delphinidin in mucin-producing human airway epithelial cells has not been determined. Therefore, this study was conducted in order to investigate the effect and the brief signaling pathway of delphinidin in lipopolysaccharide (LPS)-induced MUC8 and MUC5B expression in human airway epithelial cells. METHODS: In mucin-producing human NCI-H292 airway epithelial cells and primary cultures of normal nasal epithelial cells, the reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassay were used for investigating the expressions of MUC8, MUC5, and Toll-like receptor 4 (TLR4), after LPS treatment and delphinidin treatment. And the signaling pathway of delphinidin on LPS-induced MUC8 and MUC5B expression was investigated using the RT-PCR, and immunoblot analysis. To confirm the involvement of TLR4 in LPS-induced MUC8 and MU5B expression, the cells were transfected with TLR4 siRNA. RESULTS: In NCI-H292 airway epithelial cells, LPS (100 ng/mL) significantly induced TLR4, MUC8, and MUC5B expression. TLR4 siRNA significantly blocked LPS-induced MUC8 and MUC5B mRNA expression. LPS (100 ng/mL) significantly activated the phosphorylation of extracellular signal related kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK). Delphinidin (50 and 100 microM) inhibited LPS-induced TLR4, MUC8, and MUC5B expression and LPS-induced phosphorylation of ERK1/2 and p38 MAPK. In the primary cultures of normal nasal epithelial cells, delphinidin (50 and 100 microM) significantly inhibited LPS-induced TLR4, MUC8, and MUC5B gene expression. CONCLUSION: These results suggest that delphinidin attenuates LPS-induced MUC8 and MUC5B expression through the TLR4-mediated ERK1/2 and p38 MAPK signaling pathway in human airway epithelial cells. These findings indicated that delphinidin may be a therapeutic agent for control of inflammatory airway diseases.


Assuntos
Humanos , Antocianinas , Células Epiteliais , Expressão Gênica , Técnicas Imunoenzimáticas , Lipopolissacarídeos , Proteínas Quinases p38 Ativadas por Mitógeno , Fosforilação , Fosfotransferases , Proteínas Quinases , Reação em Cadeia da Polimerase em Tempo Real , RNA Mensageiro , RNA Interferente Pequeno , Receptor 4 Toll-Like , Receptores Toll-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA