Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Odovtos (En línea) ; 25(2)ago. 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1448746

RESUMO

Cells undergo autophagy to save themselves from injury, but progressive autophagy can cause cell death. This study characterized and compared the effect of grape (resveratrol) and tomato (lycopene) extracts and their combination on modulating autophagy-related miRNA and its target gene in squamous cell carcinoma cell line. Docking analysis for extracts and selected genes was performed. Methyl Thiazol Tetrazolium assays were used to assess the cytotoxicity of extracts and their combination toward HEp-2 cells. qRT-PCR was used to quantify changes in gene expression. Data were statistically analyzed. miRNA-20a was identified as a potential effector in laryngeal cancer, and sequestosome-1 (SQSTM1) was its target gene. Docking analysis showed that resveratrol interacted with miRNA-20a and showed less affinity toward SQSTM1. Hydrogen bonds and hydrophobic interactions were predicted. In contrast, lycopene showed less affinity toward miRNA-20a than resveratrol. Increasing doses of resveratrol, lycopene, and their combination induced a statistically significant reduction in mean percent viability and mean fold changes of miRNA-20a and SQSTM1 expression in treated HEp-2 cells. Pearson's correlation showed a statistically significant positive correlation between miRNA-20a and SQSTM1 (R=0.812, p≤0.001). Grape and tomato extracts and their combination display promising cytotoxicity against HEp-2 cells in a dose- and time-dependent fashion. Both extracts reduce the expression of miRNA-20a and SQSTM1 with subsequent inhibition autophagy and promotion of apoptosis in HEp-2 cells.


Las células se someten a autofagia para salvarse de lesiones, pero la autofagia progresiva puede provocar la muerte celular. Este estudio caracterizó y comparó el efecto de los extractos de uva (resveratrol) y tomate (licopeno) y su combinación en la modulación de miARN relacionado con la autofagia y su gen diana en la línea celular de carcinoma de células escamosas. Se realizó análisis de acoplamiento para extractos y genes seleccionados. Se utilizaron ensayos de metil tiazol tetrazolio para evaluar la citotoxicidad de los extractos y su combinación frente a las células HEp-2. qRT-PCR se utilizó para cuantificar los cambios en la expresión génica. Los datos fueron analizados estadísticamente. El miARN-20a se identificó como un efector potencial en el cáncer de laringe y el secuenciasoma-1 (SQSTM1) fue su gen diana. El análisis de acoplamiento mostró que el resveratrol interactuaba con miRNA-20a y mostraba menos afinidad hacia SQSTM1. Se predijeron enlaces de hidrógeno e interacciones hidrofóbicas. Por el contrario, el licopeno mostró menos afinidad hacia el miARN-20a que el resveratrol. El aumento de las dosis de resveratrol, licopeno y su combinación indujo una reducción estadísticamente significativa en el porcentaje medio de viabilidad y los cambios medios en la expresión de miRNA- 20a y SQSTM1 en las células HEp-2 tratadas. La correlación de Pearson mostró una correlación positiva estadísticamente significativa entre miRNA-20a y SQSTM1 (R=0,812, p≤0,001). Los extractos de uva y tomate y su combinación muestran una citotoxicidad prometedora contra las células HEp-2 de forma dependiente de la dosis y el tiempo. Ambos extractos reducen la expresión de miRNA-20a y SQSTM1 con la posterior inhibición de la autofagia y promoción de la apoptosis en células HEp-2.

2.
Chinese Journal of Neonatology ; (6): 107-114, 2023.
Artigo em Chinês | WPRIM | ID: wpr-990732

RESUMO

Methods:Cultured human alveolar epithelial A549 cells were assigned into LPS group and blank control group. LPS group was stimulated with LPS and adenosine triphosphate to induce pyroptosis and inflammation. A549 cells were divided into 4 groups: miR-20a mimics group, mimics-negative control (NC) group, inhibitor group and inhibitor-NC group. MiRNA-20a mimics, mimics-NC, inhibitor, and inhibitor-NC were transfected respectively into A549 cells, and after 24 h, the cells were collected to verify transfection efficiency by qPCR. MiRNA-20a mimics and the constructed TLR4-3'UTR double luciferase reporter plasmid were co-transfected into A549 cells, and luciferase activity was analyzed. MiRNA-20a mimics/inhibitors were transfected into A549 cells, and then the cells were stimulated by LPS for 8 h followed by adenosine triphosphate for 30 min. QPCR, Western Blot and ELISA were used to detect the expression of GSDMD, inflammatory factors (ASC, NLRP3, Caspase-1, IL-1β) and Signaling molecules (TLR4、NF-κB) in A549 cells at mRNA level and protein level. Immunofluorescence was used to detect the expression of TLR4 in the A549 cells and NF-κB in the nucleus of A549 cells after transfecting with miRNA-20a mimics/inhibitor.Results:The mRNA and protein expression of pyroptosis marker molecule (GSDMD) and inflammatory factors (ASC, NLRP3, Caspase-1, IL-1β) in A549 cells stimulated with LPS were significantly higher than those in the blank control group, and the differences were statistically significant ( P<0.05). The expression of miRNA-20 in the mimics group was significantly higher than that in the mimic-NC group ( P<0.05), while the expression of miRNA-20a in the inhibitor group was lower than that in the inhibitor-NC group ( P<0.01). The double luciferase reporter gene experiment showed that the relative fluorescence value of the co-transfection group for TLR4-3'UTR-WT and miRNA-20a mimics was significantly lower than the co-transfection group for TLR4-3'UTR-WT and miRNA-20a mimics-NC ( P<0.05). The mRNA and protein levels of pyroptosis marker molecule (GSDMD) , inflammatory factors (ASC, NLRP3, Caspase-1, IL-1β) and signaling molecules (TLR4, NF-κB) were decreased in the mimics group compared to the mimics-NC group, and increased in inhibitor group compared to inhibitor-NC group. Conclusions:miRNA-20a may inhibit LPS-induced pyroptosis and inflammation of A549 cells via TLR4/NF-κB signal pathway.Objetive:To explore the potential role of miRNA-20a in lipopolysaccharide (LPS) induced pyroptosis and inflamation of human alveolar epithelial A549 cells and its regulation mechanisim.

3.
Chinese Journal of Clinical Oncology ; (24): 1014-1018, 2017.
Artigo em Chinês | WPRIM | ID: wpr-663370

RESUMO

Objective:To investigate microRNA-20a (miRNA-20a) expression in bladder cancer and its potential mechanism. Methods:MiRNA-20a expression was examined using quantitative reverse-transcription polymerase chain reaction (qRT-PCR) in human bladder cancer tissues and the paired adjacent non-tumor bladder tissues of 96 patients. The target gene of the miRNA-20a was predicted and validated using bioinformatics analysis and reporter gene assay, respectively. The mRNA or protein expression of the target gene in bladder cancer T24 and J82 cells transfected with miRNA-20a mimic or negative control (NC) mimics was detected via qRT-PCR, West-ern blot analysis, and cell immunofluorescence. CCK-8, Transwell chamber, and wound-healing assays were applied to test the prolifer-ation, migration, and invasion of T24 cells after miRNA-20a over-expression in vitro. Results:MiRNA-20a expression significantly in-creased in bladder cancer tissues compared with those in corresponding adjacent non-tumor tissues. High miRNA-20a expression in bladder cancer tissues was closely related to aggressive tumor phenotype, such as high histological grade, poor TNM stage, lymph node invasion, distant metastasis, and tumor recurrence (all P<0.001). Dual-luciferase reporter assay confirmed that miRNA-20a can di-rectly bind to the 3'-untranslated region (3'-UTR) of Homo sapiens longevity assurance homologue 2 (LASS2). Transfection with miRNA-20a mimics significantly inhibited mRNA and protein expression of LASS2 in T24 and J82 cells (all P<0.01) and promoted T24 cell prolif-eration, migration, and invasion in vitro. Conclusion:MiRNA-20a is highly expressed in bladder cancer tissues. MiRNA-20a enhances cell migration as well as proliferation and acts as an oncogene in bladder cancer because of the targeted inhibition of LASS2 expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA