Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.204
Filtrar
1.
Acta Pharmaceutica Sinica ; (12): 269-278, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1016656

RESUMO

Non-infectious chronic diseases in human including diabetes, non-alcoholic fatty liver disease (NAFLD), atherosclerosis (AS), neurodegenerative diseases, osteoporosis, as well as malignant tumors may have some common pathogenic mechanisms such as non-resolved inflammation (NRI), gut microbiota dysfunction, endoplasmic reticulum stress, mitochondria dysfunction, and abnormality of the mammalian target of rapamycin (mTOR) pathway. These pathogenic mechanisms could be the basis for "homotherapy for heteropathy" in clinic. Some commonly used clinical drugs, such as metformin, berberine, aspirin, statins, and rapamycin may execute therapeutic effect on their targeted diseases,and also have the effect of "homotherapy for heteropathy". The mechanisms of the above drugs may include anti-inflammation, modulation of gut microbiota, suppression of endoplasmic reticulum stress, improvement of mitochondria function, and inhibition of mTOR. For virus infectious diseases, as some viruses need certain commonly used replicases, the inhibitors of the replicases become examples of "homotherapy for heteropathy" for antiviral therapy in clinic (for example tenofovir for both AIDS and HBV infection). Especially, in case of outbreak of new emerging viruses, these viral enzyme inhibitors such as azvudine and sofibuvir, could be rapidly used in controlling viral epidemic or pandemic, based on the principle of "homotherapy for heteropathy". In this review article, we show the research progress of the biological basis for "homotherapy for heteropathy" and the possible mechanisms of some well-known drugs, in order to provide insights and new references for innovative drug R&D.

2.
Chinese Pharmacological Bulletin ; (12): 405-409, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013648

RESUMO

Cardiovascular diseases ( CVDs ) are the leading cause of death worldwide and pose a serious threat to human health. Silent information regulator 5 ( SIRT5 ) , which is widely distributed in cardiac myocytes, vascular smooth muscle cells and endothelial cells,as a novel deacylation-modifying enzyme,plays an important role in CVDs through deacetylation, desuccinylation and demalonylation. This review summarizes the pathophysiolog-ical mechanism of SIRT5 from the aspects of energy metabolism, regulation of inflammatory response and oxidative stress, apart from the role of SIRT5 in CVDs such as myocardial infarction, myocardial hypertrophy, arrhythmia, atherosclerosis and heart failure. This review also figures out the current research progress of SIRT5 -related inhibitors and agonists, so as to provide strategies for targeting SIRT5 to prevent and treat CVDs.

3.
Chinese Pharmacological Bulletin ; (12): 256-262, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013618

RESUMO

Aim To study the mechanism of quereetin (Que) inhibiting mitochondrial damage induced by Aβ

4.
Chinese Pharmacological Bulletin ; (12): 308-316, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013586

RESUMO

Aim To explore the effect of berberine (B E) on RSV infected HEp-2 cells and the related mechanism. Methods HEp-2 cells were infected with RSV and treated with BE. Cell viability was assessed using the CCK-8 assay. Protein expression levels of NLRP3, ASC, caspase-1, PINK1, Parkin, Beclinl, p62, LC3 I,LC3 II,and BNIP3 in HEp-2 cells were detected by Western blot. The secretion level of IL-1 p in HEp-2 cells was measured using ELISA. Apoptosis rate and mitochondrial membrane potential of HEp-2 cells were examined by flow cytometry. Mitochondrial ROS (mtROS) in HEp-2 cells was detected through MitoSOX staining. Colocalization of mitochondria and autophagosomes in HEp-2 cells was investigated using immunofluorescence staining. Cyclosporin A was used for validation experiments. Results BE could significantly improve the activity of RSV-infected HEp-2 cells,reduce the apoptosis rate (P < 0. 05), and decrease the activation level of NLRP3 inflammasomes and IL-lp level (P <0. 05); BE improved mitochondrial function by increasing mitochondrial membrane potential and ATP levels,and reduced mtROS. BE significantly promoted the colocalization of mitochondria-autophagosome in RSV infected cells, inducing PINK1/ Parkin and BNIP3 to mediate mitochondrial autophagy; cyclosporine A aggravated RSV infection. Conclusions BE has protective effects on HEp-2 cells infected by RSV. The mechanism may be related to the inhibitory effect of BE on the production of mtROS and the activation of NLRP3 inflammasomes by inducing PINK1/ Parkin and BNIP3-mediated mitochondrial autophagy.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 197-205, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1012709

RESUMO

With the increasing incidence of diabetes mellitus in recent years, cardiomyopathy caused by diabetes mellitus has aroused wide concern and this disease is characterized by high insidiousness and high mortality. The early pathological changes of diabetic cardiomyopathy (DCM) are mitochondrial structural disorders and loss of myocardial metabolic flexibility. The turbulence of mitochondrial quality control (MQC) is a key mechanism leading to the accumulation of damaged mitochondria and loss of myocardial metabolic flexibility, which, together with elevated levels of oxidative stress and inflammation, trigger changes in myocardial structure and function. Qi deficiency and stagnation is caused by the loss of healthy Qi, and the dysfunction of Qi transformation results in the accumulation of pathogenic Qi, which further triggers injuries. According to the theory of traditional Chinese medicine (TCM), DCM is rooted in Qi deficiency of the heart, spleen, and kidney. The dysfunction of Qi transformation leads to the generation and lingering of turbidity, stasis, and toxin in the nutrient-blood and vessels, ultimately damaging the heart. Therefore, Qi deficiency and stagnation is the basic pathologic mechanism of DCM. Mitochondria, similar to Qi in substance and function, are one of the microscopic manifestations of Qi. The role of MQC is consistent with the defense function of Qi. In the case of MQC turbulence, mitochondrial structure and function are impaired. As a result, Qi deficiency gradually emerges and triggers pathological changes, which make it difficult to remove the stagnant pathogenic factor and aggravates the MQC turbulence. Ultimately, DCM occurs. Targeting MQC to treat DCM has become the focus of current research, and TCM has the advantages of acting on multiple targets and pathways. According to the pathogenesis of Qi deficiency and stagnation in DCM and the modern medical understanding of MQC, the treatment should follow the principles of invigorating healthy Qi, tonifying deficiency, and regulating Qi movement. This paper aims to provide ideas for formulating prescriptions and clinical references for the TCM treatment of DCM by targeting MQC.

6.
Organ Transplantation ; (6): 220-228, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1012492

RESUMO

Objective To evaluate the effect of spliced X-box binding protein 1 (XBP1s) on hypoxia/reoxygenation (H/R) injury of mouse renal tubular epithelial cells and unravel underlying mechanism. Methods Mouse renal tubular epithelial cells were divided into adenovirus negative control group (Ad-shNC group), targeted silencing XBP1s adenovirus group (Ad-shXBP1s group), Ad-shNC+H/R group and Ad-shXBP1s+H/R group. The apoptosis level, mitochondrial reactive oxygen activity, mitochondrial membrane potential and mitochondrial calcium ion level were detected in each group. Chromatin immunocoprecipitation followed by sequencing (ChIP-seq) was employed to analyze the binding sites of XBP1s in regulating the inositol 1,4,5-trisphosphate receptor (ITPR) family. The expression levels of XBP1s and ITPR family messenger RNA (mRNA) and protein were determined in each group. Results Compared with the Ad-shNC group, the apoptosis level was higher, mitochondrial reactive oxygen species level was increased, mitochondrial membrane potential was decreased and mitochondrial calcium ion level was elevated in the Ad-shNC+H/R group. Compared with the Ad-shNC+H/R group, the apoptosis level was lower, mitochondrial reactive oxygen species level was decreased, mitochondrial membrane potential was elevated, and mitochondrial calcium ion level was decreased in the Ad-shXBP1s+H/R group (all P<0.05). Compared with the Ad-shNC group, relative expression levels of XBP1s, ITPR1, ITPR2 and ITPR3 mRNAs and proteins were down-regulated in the Ad-shXBP1s group (all P<0.05). Compared with the Ad-shNC group, relative expression levels of XBP1s, ITPR1, ITPR2 and ITPR3 proteins were up-regulated in the Ad-shNC+H/R group. Compared with the Ad-shNC+H/R group, relative expression levels of XBP1s, ITPR1, ITPR2 and ITPR3 were down-regulated in the Ad-shXBP1s+H/R group (all P<0.05). ChIP-seq results showed that XBP1s could bind to the promoter and exon of ITPR1, the exon of ITPR2, and the exon of ITPR3. Conclusions XBP1s may affect mitochondria-associated endoplasmic reticulum membrane structure and function by directly regulating ITPR transcription and translation. Down-regulating XBP1s may inhibit ITPR expression and mitigate mitochondrial damage.

7.
China Pharmacy ; (12): 401-406, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1011318

RESUMO

OBJECTIVE To investigate the effects of quercetin on mitochondrial energy metabolism function after myocardial ischemia. METHODS H9c2 cells were divided into blank group, model group, quercetin high-dose, medium-dose and low-dose groups (40, 20, 10 μmol/L), and positive control group (cyclosporine A, 1 μmol/L). Reactive oxygen species (ROS), mitochondrial membrane potential (MMP), openness of mitochondrial permeability transition pore (MPTP), adenosine triphosphate (ATP), malondialdehyde (MDA), lactate dehydrogenase (LDH) and creatine kinase (CK) were observed after cell hypoxia treatment. Rats were randomly assigned into sham operation group, model group, quercetin high-dose, medium-dose and low-dose groups (100, 50, 25 mg/kg), and positive control group (trimetazidine, 6.3 mg/kg), with 8 rats in each group. They were given relevant medicine intragastrically, once a day, for 7 consecutive days. After the last medication, myocardial ischemia model was induced by the ligation of the left anterior descending branch of the coronary artery. The contents of LDH, MDA, creatine kinase isoenzyme-MB (CK-MB), superoxide dismutase (SOD), complex Ⅰ, complex Ⅳ and ATP in serum were all determined. RESULTS Compared with the model group, ROS fluorescence intensity, openness of MPTP, the contents of CK, LDH and MDA were significantly decreased in quercetin low-dose, medium-dose and high-dose groups, and positive control group, while the contents of MMP and ATP were all increased significantly (P<0.01); the contents of CK-MB, LDH and MDA in serum were all decreased significantly in quercetin low-dose, medium-dose and high-dose groups, and positive control group, while the contents of SOD, complex Ⅰ, complex Ⅳ and ATP (except for positive control group) were increased significantly (P< 0.05 or P<0.01). CONCLUSIONS Quercetin can effectively reduce myocardial hypoxic injury, promote endogenous energy production and improve mitochondrial function after myocardial ischemia.

8.
Acta Pharmaceutica Sinica B ; (6): 190-206, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1011236

RESUMO

Macroautophagy (referred to as autophagy hereafter) is a major intracellular lysosomal degradation pathway that is responsible for the degradation of misfolded/damaged proteins and organelles. Previous studies showed that autophagy protects against acetaminophen (APAP)-induced injury (AILI) via selective removal of damaged mitochondria and APAP protein adducts. The lysosome is a critical organelle sitting at the end stage of autophagy for autophagic degradation via fusion with autophagosomes. In the present study, we showed that transcription factor EB (TFEB), a master transcription factor for lysosomal biogenesis, was impaired by APAP resulting in decreased lysosomal biogenesis in mouse livers. Genetic loss-of and gain-of function of hepatic TFEB exacerbated or protected against AILI, respectively. Mechanistically, overexpression of TFEB increased clearance of APAP protein adducts and mitochondria biogenesis as well as SQSTM1/p62-dependent non-canonical nuclear factor erythroid 2-related factor 2 (NRF2) activation to protect against AILI. We also performed an unbiased cell-based imaging high-throughput chemical screening on TFEB and identified a group of TFEB agonists. Among these agonists, salinomycin, an anticoccidial and antibacterial agent, activated TFEB and protected against AILI in mice. In conclusion, genetic and pharmacological activating TFEB may be a promising approach for protecting against AILI.

9.
Journal of Clinical Hepatology ; (12): 147-150, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006440

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has gradually become the main reason affecting human liver health, and many factors are involved in the development and progression of NAFLD. Mitochondria, as the “energy factory” of cells, plays an important role in maintaining normal physiological functions. Studies have shown that hepatic mitochondrial dysfunction promotes the development and progression of NAFLD. This article briefly introduces the latest research advances in the basic characteristics and physiological function of liver mitochondria and reviews new research findings in the association of mitochondrial dysfunction with obesity, simple fatty liver disease, and nonalcoholic steatohepatitis, in order to provide new ideas for the research on targeted mitochondrial therapy for NAFLD.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 234-243, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1003428

RESUMO

Liver failure (LF), as a clinical syndrome of severe hepatocyte damage and liver dysfunction, has become a major obstacle to human health due to the triple superposition of high mortality, high morbidity, and high medical resource depletion. It is of great significance to further study the core factors of the disease and supplementary treatment methods to improve the survival rate of patients with LF. The pathogenesis of LF is complex, and mitochondrion is one of the sensitive organelles in hepatocytes and the central link of intracellular energy metabolism. A large number of studies have shown that the structure and function of mitochondria in hepatocytes are changed in LF, and the abnormal structure and function of mitochondria play an important role in the process of LF disease. Among them, multiple factors such as mitochondrial respiratory chain disorder, mitochondrial DNA damage, mitochondrial permeability transition pore opening, mitochondrial quality control imbalance, and mitochondrial oxidative stress are intertwined, forming a complex and unified whole network, which becomes the key node affecting the progression of LF. In recent years, researchers have begun to study drugs that can regulate the function of liver mitochondria to prevent and treat LF. With the deepening of research, traditional Chinese medicine has made breakthroughs in the prevention and treatment of LF. Many studies have confirmed that traditional Chinese medicine can play a role in the prevention and treatment of LF by protecting mitochondrial function, which can be summarized as reducing liver cell damage, inhibiting liver cell death, and promoting liver cell regeneration, so as to effectively compensate for liver function and promote the recovery of liver parenchyma quality and function. This article summarized the structure and function of mitochondria, the relationship between LF and mitochondria, and the research on the intervention of mitochondrial function in the field of traditional Chinese medicine to prevent and treat LF, so as to provide certain ideas and references for the clinical treatment of LF with traditional Chinese medicine.

11.
Rev. bras. ginecol. obstet ; 45(7): 393-400, July 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1507874

RESUMO

Abstract Objective Endometriosis causes a decrease in oocyte quality. However, this mechanism is not fully understood. The present study aimed to analyze the effect of endometriosis on cumulus cell adenosine triphosphate ATP level, the number of mitochondria, and the oocyte maturity level. Methods A true experimental study with a post-test only control group design on experimental animals. Thirty-two mice were divided into control and endometriosis groups. Cumulus oocyte complex (COC) was obtained from all groups. Adenosine triphosphate level on cumulus cells was examined using the Elisa technique, the number of mitochondria was evaluated with a confocal laser scanning microscope and the oocyte maturity level was evaluated with an inverted microscope. Results The ATP level of cumulus cells and the number of mitochondria in the endometriosis group increased significantly (p < 0.05; p < 0.05) while the oocyte maturity level was significantly lower (p < 0.05). There was a significant relationship between ATP level of cumulus cells and the number of mitochondrial oocyte (p < 0.01). There was no significant relationship between cumulus cell ATP level and the number of mitochondrial oocytes with oocyte maturity level (p > 0.01; p > 0.01). The ROC curve showed that the number of mitochondrial oocytes (AUC = 0.672) tended to be more accurate than cumulus cell ATP level (AUC = 0.656) in determining the oocyte maturity level. Conclusion In endometriosis model mice, the ATP level of cumulus cells and the number of mitochondrial oocytes increased while the oocyte maturity level decreased. There was a correlation between the increase in ATP level of cumulus cells and an increase in the number of mitochondrial oocytes.


Assuntos
Animais , Ratos , Oócitos , Trifosfato de Adenosina , Endometriose , Células do Cúmulo , Saúde Reprodutiva , Mitocôndrias
12.
Int. j. morphol ; 41(1): 308-318, feb. 2023. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1430503

RESUMO

SUMMARY: Gastrin plays a vital role in the development and progression of gastric cancer (GC). Its expression is up-regulated in GC tissues and several GC cell lines. Yet, the underlying mechanism remains to be investigated. Here, we aim to investigate the role and mechanism of gastrin in GC proliferation. Gastrin-overexpressing GC cell model was constructed using SGC7901 cells. Then the differentially expressed proteins were identified by iTRAQ analysis. Next, we use flow cytometry and immunofluorescence to study the effect of gastrin on the mitochondrial potential and mitochondria-derived ROS production. Finally, we studied the underlying mechanism of gastrin regulating mitochondrial function using Co-IP, mass spectrometry and immunofluorescence. Overexpression of gastrin promoted GC cell proliferation in vitro and in vivo. A total of 173 proteins were expressed differently between the controls and gastrin- overexpression cells and most of these proteins were involved in tumorigenesis and cell proliferation. Among them, Cox17, Cox5B and ATP5J that were all localized to the mitochondrial respiratory chain were down-regulated in gastrin-overexpression cells. Furthermore, gastrin overexpression led to mitochondrial potential decrease and mitochondria-derived ROS increase. Additionally, gastrin-induced ROS generation resulted in the inhibition of cell apoptosis via activating NF-kB, inhibiting Bax expression and promoting Bcl-2 expression. Finally, we found gastrin interacted with mitochondrial membrane protein Annexin A2 using Co-IP and mass spectrometry. Overexpr ession of gastrin inhibits GC cell apoptosis by inducing mitochondrial dysfunction through interacting with mitochondrial protein Annexin A2, then up-regulating ROS production to activate NF-kB and further leading to Bax/Bcl-2 ratio decrease.


La gastrina juega un papel vital en el desarrollo y progresión del cáncer gástrico (CG). Su expresión está regulada al alza en tejidos de CG y en varias líneas celulares de CG. Sin embargo, el mecanismo subyacente aun no se ha investigado. El objetivo de este estudio fue investigar el papel y el mecanismo de la gastrina en la proliferación de CG. El modelo de células CG que sobre expresan gastrina se construyó usando células SGC7901. Luego, las proteínas expresadas diferencialmente se identificaron mediante análisis iTRAQ. A continuación, utilizamos la citometría de flujo y la inmunofluorescencia para estudiar el efecto de la gastrina en el potencial mitocondrial y la producción de ROS derivada de las mitocondrias. Finalmente, estudiamos el mecanismo subyacente de la gastrina que regula la función mitocondrial utilizando Co-IP, espectrometría de masas e inmunofluorescencia. La sobreexpresión de gastrina promovió la proliferación de células CG in vitro e in vivo. Un total de 173 proteínas se expresaron de manera diferente entre los controles y las células con sobreexpresión de gastrina y la mayoría de estas proteínas estaban implicadas en la tumorigenesis y la proliferación celular. Entre estas, Cox17, Cox5B y ATP5J, todas localizadas en la cadena respiratoria mitocondrial, estaban reguladas a la baja en las células con sobreexpresión de gastrina. Además, la sobreexpresión de gastrina provocó una disminución del potencial mitocondrial y un aumento de las ROS derivadas de las mitocondrias. Por otra parte, la generación de ROS inducida por gastrina resultó en la inhibición de la apoptosis celular mediante la activación de NF-kB, inhibiendo la expresión de Bax y promoviendo la expresión de Bcl-2. Finalmente, encontramos que la gastrina interactuaba con la proteína de membrana mitocondrial Anexina A2 usando Co-IP y espectrometría de masas. La sobreexpresión de gastrina inhibe la apoptosis de las células CG al inducir la disfunción mitocondrial a través de la interacción con la proteína mitocondrial Anexina A2, luego regula el aumento de la producción de ROS para activar NF-kB y conduce aún más a la disminución de la relación Bax/Bcl-2.


Assuntos
Animais , Camundongos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Gastrinas/metabolismo , Anexina A2/metabolismo , Mitocôndrias/patologia , Espectrometria de Massas , NF-kappa B , Imunofluorescência , Espécies Reativas de Oxigênio , Apoptose , Linhagem Celular Tumoral , Imunoprecipitação , Proliferação de Células , Carcinogênese , Citometria de Fluxo
13.
China Journal of Chinese Materia Medica ; (24): 3224-3234, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981459

RESUMO

This study aims to investigate the efficacy and possible mechanism of Liuwei Dihuang Pills in the treatment of diminished ovarian reserve(DOR) by using proteomic techniques. Firstly, cyclophosphamide(60 mg·kg~(-1)) combined with busulfan(6 mg·kg~(-1)) was injected intraperitoneally to establish the mouse model of DOR. After drug injection, the mice were continuously observed and the success of modeling was evaluated by the disturbance of the estrous cycle. After successful modeling, the mice were administrated with the suspension of Liuwei Dihuang Pills by gavage for 28 days. At the end of the gavage, four female mice were selected and caged together with males at a ratio of 2∶1 for the determination of the pregnancy rate. Blood and ovary samples were collected from the remaining mice on the next day after the end of gavage. Hematoxylin-eosin(HE) staining and transmission electron microscopy(TEM) were then employed to observe the morphological and ultrastructural changes in the ovaries. The serum levels of hormones and oxidation indicators were measured by enzyme-linked immunosorbent assay. Quantitative proteomics techniques were used to compare the ovarian protein expression before and after modeling and before and after the intervention with Liuwei Dihuang Pills. The results showed that Liuwei Dihuang Pills regulated the estrous cycle of DOR mice, elevated the serum levels of hormones and anti-oxidation indicators, promoted follicle development, protected the mitochondrial morphology of ovarian granulosa cells, and increased the litter size and survival of DOR mice. Furthermore, Liuwei Dihuang Pills negatively regulated the expression of 12 differentially expressed proteins associated with DOR, which were mainly involved in lipid catabolism, inflammatory response, immune regulation, and coenzyme biosynthesis. These differentially expressed proteins were significantly enriched in sphingolipid metabolism, arachidonic acid metabolism, ribosomes, ferroptosis, and cGMP-PKG signaling pathway. In summary, the occurrence of DOR and the treatment of DOR with Liuwei Dihuang Pills are associated with multiple biological pathways, mainly including oxidative stress response, inflammatory response, and immune regulation. "Mitochondria-oxidative stress-apoptosis" is the key to the treatment of DOR by Liuwei Dihuang Pills. YY1 and CYP4F3 may be the key upstream targets that trigger mitochondrial dysfunction and ROS accumulation, and the metabolism of arachidonic acid is the main signaling pathway of drug action.


Assuntos
Feminino , Masculino , Gravidez , Animais , Camundongos , Ácido Araquidônico , Reserva Ovariana , Proteômica , Ovário , Metabolismo dos Lipídeos
14.
China Tropical Medicine ; (12): 200-2023.
Artigo em Chinês | WPRIM | ID: wpr-979616

RESUMO

@#Objective To summarize the phenotypic and genotypic characteristics of mitochondrial combined oxidative phosphorylation deficiency type 1 (COXPD1), and to improve the clinicians' awareness of this mitochondrial encephalomyopathy. Methods The clinical characteristics, physical examination, laboratory examination and other data of a child with COXPD1 were analyzed retrospectively. The diagnosis was confirmed by clinical whole exon sequencing and high-precision mitochondrial genome full-length PLUS gene detection, and the phenotype and genotype were analyzed by reviewing relevant literature. Results A one-year and five-month-old boy mainly presented with hyperlactacidemia and abnormal liver function. Clinical whole exon sequencing showed that the child had homozygous variation of c. 688G>A(p.G230S) in the GFM1 gene. Sanger sequencing verified that the variation was respectively inherited from the parents of the child (both were heterozygous) with the autosomal recessive inheritance pattern. The high-precision mitochondrial genome full-length PLUS detection also did not find pathogenic mutations related to clinical phenotypes. The child was diagnosed with COXPD1. After "cocktail" therapy and liver protection therapy, the patient's condition improved. Conclusions The phenotype of COXPD1 is complicated and variable, mainly liver type and brain type. The mutation of GFM1 gene affects mitochondrial translation system function, and early gene detection is helpful for definite diagnosis.

15.
Journal of Clinical Hepatology ; (12): 1617-1626, 2023.
Artigo em Chinês | WPRIM | ID: wpr-978831

RESUMO

Objective To investigate the inhibitory effect of ursolic acid in Hippophae rhamnoides L. on hepatocyte apoptosis in rats with alcoholic liver disease based on the mitochondria-cytochrome c pathway. Methods A total of 50 specific pathogen-free male Wistar rats were divided into normal control group, alcohol model group, and low-, middle-, and high-dose ursolic acid groups using a random number table, with 10 rats in each group. The rats in the normal control group were given normal saline by gavage once a day for 8 weeks; the rats in the alcohol model group were given alcohol at increasing concentrations by gavage for 8 consecutive weeks; the rats in the low-, middle-, and high-dose ursolic acid groups were given ursolic acid at a dose of 50, 100, and 150 mg/kg, respectively, followed by an equal volume of alcohol as the model group 1 hour later. Serum liver function parameters were measured for each group; HE staining was used to observe liver histopathology; an electron microscope was used to observe hepatocyte ultrastructure; the TUNEL method was used to measure hepatocyte apoptosis; Western Blotting was used to measure the protein expression levels of cytochrome c and activated caspase-3 in hepatocyte mitochondria and cytoplasm. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t -test was used for further comparison between two groups. Results Compared with the alcohol model group, the middle- and high-dose ursolic acid groups had significant reductions in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase (all P < 0.05). The rats in the alcohol model group had disordered arrangement of hepatic cords with marked hepatocyte edema and fatty degeneration, while those in the middle- and high- dose ursolic acid groups had basically normal arrangement of hepatic cords and a significant improvement in hepatocyte fatty degeneration, as well as a significant increase in the number of hepatocyte mitochondria and a significant improvement in morphology. Compared with the alcohol model group, the middle- and high-dose ursolic acid groups had significantly lower hepatocyte apoptosis rate and protein expression levels of cytochrome c and caspase-3 in cytoplasm (all P < 0.05). Conclusion Ursolic acid in Hippophae rhamnoides L. can improve the liver function and histomorphology of rats with alcoholic liver disease, possibly by inhibiting the release of cytochrome c in hepatocyte mitochondria, the activation of caspase-3, and the apoptosis of hepatocytes via the mitochondria-cytochrome c pathway.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 128-134, 2023.
Artigo em Chinês | WPRIM | ID: wpr-973141

RESUMO

ObjectiveTo study the changes of mitochondrial function of ovarian granulosa cells in women of different ages and the effect of Erzhi-Tiangui prescription on in vitro fertilization-embryo transfer (IVF-ET) outcomes for elderly women, so as to verify the connotation of the "Seven-Seven" theory in the Huangdi's Internal Classic (《黄帝内经》). MethodA total of 150 infertility patients undergoing IVF-ET at the Reproductive and Genetic Center of Integrative Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine were recruited and assigned into "hree-Seven/Four-Seven (30 cases), Five-Seven (60 cases), and Six-Seven (60 cases) groups according to the "Seven-Seven" theory. The Five-Seven and Six-Seven groups were further assigned into control and Chinese medicine subgroups using the random number plus envelope method, and the Chinese medicine group was administrated with Erzhi Tiangui prescription from the start day of controlled ovulation stimulation cycle to the trigger day. The IVF outcome was observed, and Western blot was employed to determine the levels of mitofusin 1 (MFN1), mitofusin 2 (MFN2), and dynamin-related protein 1 (Drp1) in the ovarian granulosa cells. ResultCompared with the Three-Seven/Four-Seven group, the control subgroups of the Five-Seven and Six-Seven groups showed decreased retrieved oocytes, two pronuclear (2PN) embryos, available embryos, high-quality embryos, clinical pregnancy rate, and live birth rate (P<0.05). Moreover, the control subgroup of the Six-Seven group showed decreased fresh embryo transfer rate(P<0.05). Compared with the control subgroup of the Five-Seven group, that of the Six-Seven group showed reduced retrieved oocytes, 2PN embryos, available embryos, high-quality embryos, and clinical pregnancy rate (P<0.05). The Chinese medicine subgroup had more retrieved oocytes, 2PN oocytes, and available embryos than the control subgroup in the Five-Seven groups (P<0.05). The Chinese medicine subgroup had more retrieved oocytes, than the control subgroup in the Six-Seven groups (P<0.05). The control subgroup of the Six-Seven group showed lower expression levels of Mfn1 and Mfn2 and higher level of Drp1 than the control subgroup of the Five-Seven group (P<0.05), which indicated that the levels of Mfn1 and Mfn2 in ovarian granulosa cells were down-regulated while the expression of Drp1 was up-regulated with aging (P<0.05). The Chinese medicine subgroup had higher Mfn2 level and lower Drp1 level than the control subgroup in the Five-Seven group (P<0.05), and the Chinese medicine subgroup had higher Mfn1 and Mfn2 levels and lower Drp1 level than then control subgroup in the Six-Seven group (P<0.05). ConclusionsThe prognosis of IVF in women after "Five-Seven" became worse with aging, and the mitochondria in ovarian granulosa cells showed decreased fusion ability and increased fission, which verified the connotation of the "Seven-Seven" theory from the mitochondrial function. Erzhi Tiangui prescription can regulate the mitochondrial function of ovarian granulosa cells in elderly women, up-regulate the expression levels of Mfn1 and Mfn2 to promote mitochondrial fusion, and down-regulate the expression of Drp1 to reduce mitochondrial fission, thus alleviating the ovarian hypofunction caused by aging, improve the development potential of oocytes, and improve the IVF outcomes of elderly women. However, this prescription has limited efficacy for the elderly women in the age range of "Six-Seven".

17.
Organ Transplantation ; (6): 449-2023.
Artigo em Chinês | WPRIM | ID: wpr-972937

RESUMO

Liver transplantation is a vital treatment for end-stage liver disease. However, the shortage of donor livers has limited the development of liver transplantation. How to expand the source of donor livers has become a challenge in the academic community. In recent years, the proportion of donors with non-alcoholic fatty liver disease (NAFLD) has been increased. Rational use of steatotic donor livers is a feasible approach to expand the donor pool. Cold ischemia injury during donor liver preservation before liver transplantation increases the risk of postoperative organ dysfunction. Therefore, it is of significance to unravel the mechanism and intervention measures of cold ischemia injury of steatotic donor livers. Cold ischemia injury of steatotic donor livers is characterized as the damage of mitochondria, lysosomes and endoplasmic reticulum at the organelle level, and up-regulated expression of adenosine monphosphate activated protein kinase (AMPK), aldehyde dehydrogenase 2 (ALDH2) and heme oxygenase (HO)-1 at the protein level. In this article, the research progresses on cold ischemia injury of steatotic donor livers and relevant intervention measures were reviewed.

18.
Acta Pharmaceutica Sinica B ; (6): 1028-1035, 2023.
Artigo em Inglês | WPRIM | ID: wpr-971760

RESUMO

Mitochondrial diseases are a group of inherited or acquired metabolic disorders caused by mitochondrial dysfunction which may affect almost all the organs in the body and present at any age. However, no satisfactory therapeutic strategies have been available for mitochondrial diseases so far. Mitochondrial transplantation is a burgeoning approach for treatment of mitochondrial diseases by recovery of dysfunctional mitochondria in defective cells using isolated functional mitochondria. Many models of mitochondrial transplantation in cells, animals, and patients have proved effective via various routes of mitochondrial delivery. This review presents different techniques used in mitochondrial isolation and delivery, mechanisms of mitochondrial internalization and consequences of mitochondrial transplantation, along with challenges for clinical application. Despite some unknowns and challenges, mitochondrial transplantation would provide an innovative approach for mitochondrial medicine.

19.
Neuroscience Bulletin ; (6): 453-465, 2023.
Artigo em Inglês | WPRIM | ID: wpr-971570

RESUMO

Myelin-forming oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS) are essential for structural and functional homeostasis of nervous tissue. Albeit with certain similarities, the regulation of CNS and PNS myelination is executed differently. Recent advances highlight the coordinated regulation of oligodendrocyte myelination by amino-acid sensing and growth factor signaling pathways. In this review, we discuss novel insights into the understanding of differential regulation of oligodendrocyte and Schwann cell biology in CNS and PNS myelination, with particular focus on the roles of growth factor-stimulated RHEB-mTORC1 and GATOR2-mediated amino-acid sensing/signaling pathways. We also discuss recent progress on the metabolic regulation of oligodendrocytes and Schwann cells and the impact of their dysfunction on neuronal function and disease.


Assuntos
Aminoácidos , Bainha de Mielina/metabolismo , Células de Schwann/metabolismo , Oligodendroglia/metabolismo , Transdução de Sinais , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
20.
Journal of Zhejiang University. Science. B ; (12): 172-184, 2023.
Artigo em Inglês | WPRIM | ID: wpr-971478

RESUMO

Auditory neuropathy spectrum disorder (ANSD) represents a variety of sensorineural deafness conditions characterized by abnormal inner hair cells and/or auditory nerve function, but with the preservation of outer hair cell function. ANSD represents up to 15% of individuals with hearing impairments. Through mutation screening, bioinformatic analysis and expression studies, we have previously identified several apoptosis-inducing factor (AIF) mitochondria-associated 1 (AIFM1) variants in ANSD families and in some other sporadic cases. Here, to elucidate the pathogenic mechanisms underlying each AIFM1 variant, we generated AIF-null cells using the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system and constructed AIF-wild type (WT) and AIF-mutant (mut) (p.‍T260A, p.‍R422W, and p.‍R451Q) stable transfection cell lines. We then analyzed AIF structure, coenzyme-binding affinity, apoptosis, and other aspects. Results revealed that these variants resulted in impaired dimerization, compromising AIF function. The reduction reaction of AIF variants had proceeded slower than that of AIF-WT. The average levels of AIF dimerization in AIF variant cells were only 34.5%‍‒‍49.7% of that of AIF-WT cells, resulting in caspase-independent apoptosis. The average percentage of apoptotic cells in the variants was 12.3%‍‒‍17.9%, which was significantly higher than that (6.9%‍‒‍7.4%) in controls. However, nicotinamide adenine dinucleotide (NADH) treatment promoted the reduction of apoptosis by rescuing AIF dimerization in AIF variant cells. Our findings show that the impairment of AIF dimerization by AIFM1 variants causes apoptosis contributing to ANSD, and introduce NADH as a potential drug for ANSD treatment. Our results help elucidate the mechanisms of ANSD and may lead to the provision of novel therapies.


Assuntos
Humanos , Fator de Indução de Apoptose/metabolismo , NAD/metabolismo , Dimerização , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA