Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Biol. Res ; 56: 27-27, 2023. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1513739

RESUMO

BACKGROUND: The underlying mechanism of Parkinson's disease are still unidentified, but excitotoxicity, oxidative stress, and neuroinflammation are considered key actors. Proliferator activated receptors (PPARs) are transcription factors involved in the control of numerous pathways. Specifically, PPARß/δ is recognized as an oxidative stress sensor, and we have previously reported that it plays a detrimental role in neurodegeneration. METHODS: Basing on this concept, in this work, we tested the potential effects of a specific PPARß/δ antagonist (GSK0660) in an in vitro model of Parkinson's disease. Specifically, live-cell imaging, gene expression, Western blot, proteasome analyses, mitochondrial and bioenergetic studies were performed. Since we obtained promising results, we tested this antagonist in a 6-hydroxydopamine hemilesioned mouse model. In the animal model, behavioral tests, histological analysis, immunofluorescence and western blot of substantia nigra and striatum upon GSK0660 were assayed. RESULTS: Our findings suggested that PPARß/δ antagonist has neuroprotective potential due to neurotrophic support, anti-apoptotic and anti-oxidative effects paralleled to an amelioration of mitochondria and proteasome activity. These findings are strongly supported also by the siRNA results demonstrating that by silencing PPARß/δ a significative rescue of the dopaminergic neurons was obtained, thus indicating an involvement of PPARß/δ in PD's pathogenesis. Interestingly, in the animal model, GSK0660 treatment confirmed neuroprotective effects observed in the in vitro studies. Neuroprotective effects were highlighted by the behavioural performance and apomorphine rotation tests amelioration and the reduction of dopaminergic neuronal loss. These data were also confirmed by imaging and western blotting, indeed, the tested compound decreased astrogliosis and activated microglia, concomitant with an upregulation of neuroprotective pathways. CONCLUSIONS: In summary, PPARß/δ antagonist displayed neuroprotective activities against 6-hydroxydopamine detrimental effects both in vitro and in vivo models of Parkinson's disease, suggesting that it may represent a novel therapeutic approach for this disorder.


Assuntos
Animais , Camundongos , Doença de Parkinson/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , PPAR beta , Oxidopamina , Complexo de Endopeptidases do Proteassoma
2.
Neuroscience Bulletin ; (6): 832-844, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982457

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder caused by the loss of dopamine neurons in the substantia nigra and the formation of Lewy bodies, which are mainly composed of alpha-synuclein fibrils. Alpha-synuclein plays a vital role in the neuroinflammation mediated by the nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in PD. A better understanding of the NLRP3 inflammasome-mediated neuroinflammation and the related mitochondrial impairment during PD progression may facilitate the development of promising therapies for PD. This review focuses on the molecular mechanisms underlying NLRP3 inflammasome activation, comprising priming and protein complex assembly, as well as the role of mitochondrial impairment and its subsequent inflammatory effects on the progression of neurodegeneration in PD. In addition, the therapeutic strategies targeting the NLRP3 inflammasome for PD treatment are discussed, including the inhibitors of NLRP3 inflammatory pathways, mitochondria-focused treatments, microRNAs, and other therapeutic compounds.


Assuntos
Humanos , Doença de Parkinson/complicações , alfa-Sinucleína , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias , Mitocôndrias
3.
Korean Journal of Veterinary Research ; : 11-17, 2013.
Artigo em Coreano | WPRIM | ID: wpr-31684

RESUMO

In this study, to understand the pathogenesis of new rabbit hemorrhagic disease virus (RHDVa) serotype, we carried out to administrate RHDVa to rabbits, and to examine sequential electron microscopic changes and relationship between pathogenesis and apoptosis. TUNEL-positive cells began to be observed from 24 hours after inoculation (HAI) and the number of positive cells was slightly increased with the course of time. Whereas marked increase of positive cells was seen in the liver from the rabbits died acutely. Typical viral particles with cup-like projections and a diameter of 30~40 nm were detected in homogenized liver samples and tissues at 36 and 48, and 48 HAI, respectively. Ultrastructurally, glycogen deposition was observed from the first stage of hepatocellular degeneration by RHDVa infection and then, swelling and disruption of cristae of mitochondria by viral particles, swelling of smooth endoplasmic reticulum, vacuoles and vesicles were detected. Condensation, margination and fragmentation of chromatin were observed in degenerative hepatocytes at 36 and 48 HAI, indicating apoptotic bodies. These data offer that hepatocytic apoptosis by RHDV infection could be closely related with mitochondrial impairment in the hepatocytes.


Assuntos
Coelhos , Apoptose , Cromatina , Elétrons , Retículo Endoplasmático Liso , Glicogênio , Vírus da Doença Hemorrágica de Coelhos , Hepatócitos , Fígado , Mitocôndrias , Entorses e Distensões , Vacúolos , Vírion
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA