Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Malaysian Journal of Medicine and Health Sciences ; : 222-233, 2022.
Artigo em Inglês | WPRIM | ID: wpr-980029

RESUMO

@#Introduction: Preclinical studies on mesenchymal stromal cells (MSC) have allowed the cells to be considered as a promising candidate for cellular therapy. In recent years, conflicting data have been reported regarding various aspects of their characteristics, development and differentiation potential, which may be due to arrange of factors. Among the factors worth investigating is the culture medium formulation. Methods: Here we have made a comparative characterization of mouse bone marrow mesenchymal stromal cells (mBM-MSC) that were cultured using two common supplements, MesenCult™ Stimulatory Supplement (MSS) and fetal bovine serum (FBS), under the same experimental conditions at different passages. Clonogenic potential, cumulative population doubling level (CPDL), population doubling time (PDT), immunophenotyping, differentiation, immunosuppression potentials and chromosome analysis of early and late passages mBM-MSC were assessed. Results: Our findings showed that the CPDL, immunophenotype and immunosuppression potential of mBM-MSC were similar. However, variations were seen in their clonogenicity, population doubling time and differentiation efficacy whereby all of these were enhanced in DMSS. These observations suggest that their genetic make-up may be affected by both supplements upon prolonged culture. Interestingly, this conjecture was supported when chromosomal analysis revealed genetic instability of mBM-MSCs cultured in both supplements. Conclusion: In conclusion, culture medium formulation was shown to cause variations and spontaneous transformation in mBM-MSCs raising concerns on the usage of late passages mBMMSCs in fundamental and preclinical downstream experiments.

2.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 390-397, 2022.
Artigo em Chinês | WPRIM | ID: wpr-923363

RESUMO

Objective@# To investigate the effects of over expression and low expression of antisense transcripts of circular RNA cerebellar degeneration associated protein 1 (CDR1as) in Balb/C mouse bone marrow mesenchymal stem cells (BMSCs) on factors related to osteogenesis and angiogenesis.@*Methods@#BMSCs were cultured and identified in vitro. The lentiviral (LV) vector containing the overexpressed and silenced circRNA CDR1as genes and the control lentivirus were respectively transfected into mouse BMSCs, and stable cell lines were screened. The cells were divided into the circRNACDR1as over expression group and the over expression control group, and the CircRNACDR1as low expression group and the low expression control group. The components were stained with Alizarin Red S and alkaline phosphatase after 14 and 21 days of osteoinduction; qRT-PCR was used to detect the target genes circRNA CDR1as, osteogenic differentiation markers alkaline phosphatase (ALP), runt- related transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN), osterix(Osx), collagen I (COL-1), and the mRNA expression levels of vascular endothelial grown factor (VEGF) and angiogenin-1 (Ang-1). @*Results@# The results of alizarin red staining and alkaline phosphatase staining showed that the extracellular matrix calcium precipitation and ALP staining area of the over expression experimental group was greater than its control group, and those of the low expression experimental group was less than its control group. As the number of days of osteogenic induction increased, the calcium precipitation and ALP staining in each group also increased. RT-PCR results showed that the mRNA expression levels of circRNA CDR1as, ALP, RUNX2, OCN, OPN, OSX, COL-1, VEGF and Ang-1 in the over expression experimental group BMSCs were significantly increased (P<0.001). In the low expression experimental group, the mRNA expression levels of circRNA CDR1as, ALP, RUNX2, OCN, OPN, OSX, COL-1, VEGF and Ang-1 in BMSCs were significantly reduced (P<0.001). @*Conclusion@# Over expression of the circRNA CDR1as gene promotes the osteogenic differentiation and angiogenesis of BMSCs. Low expression of the circRNA CDR1as gene inhibits the osteogenic differentiation and angiogenesis of BMSCs.

3.
Journal of Medical Postgraduates ; (12): 678-683, 2020.
Artigo em Chinês | WPRIM | ID: wpr-822583

RESUMO

ObjectiveExosomes secreted by BMSC overexpressing GATA-4 gene (BMSCGATA-4-exosome) can promote the differentiation of BMSC into cardiomyocyte-like cells, thereby improve cardiac function after myocardial infarction. However, the molecular mechanism of BMSCGATA-4-exosome in cardiomyocyte-like cell differentiation is unknown. The effect of the secretion of BMSCGATA-4 exosome from bone marrow mesenchymal stem cells (BMSC) in the differentiation of stem cells into cardiomyocytes was determined in miRNA-673-5p/Tsc-1 axis dependent manner.MethodsMouse models of myocardial infarction were established and divided into seven groups. Simulation group (BMSCmiR-673-5p-mimic exosome), inhibition group (BMSCmiR-673-5p-inhibitor exosome), GATA-4 group (BMSCGATA-4 exosome), empty vector group (BMSCempty vector exosome), and BMSC group (BMSC exosome) were injected into the tail vein for 48 h, and the untreated and normal mice were used as the control group. Cardiac ultrasound was used to detect cardiac function in each group. miRNA-673-5p expression in myocardial infarction was detected using real-time polymerase chain reaction (RT-PCR). The myocardial tissues were extracted from the same myocardial infarction site. Myocardial-specific molecules, such as α-actin, Desmin, cTnT, and Cx43, were detected using RT-PCR. Western blot was used to determine the expression of the corresponding target gene of miRNA-673-5p, Tsc-1, Erk1/2, and Mef2c proteins.ResultsThe simulation group wan shown the most significantly improved myocardial function (P<0.05) with an expression peak of miRNA-673-5p in cardiomyocytes (P<0.05). The highest content of myocardial-specific molecules including α-actin, Desmin, cTnT, and Cx43 was found in the simulation group. The simulation group had the lowest expression of Tsc-1 in cardiomyocytes (P<0.05).ConclusionOverexpressed BMSCGATA-4 exosomes inhibit Tsc-1 expression through miRNA-673-5p to improve cardiac function during myocardial infarction.

4.
European J Med Plants ; 2019 Nov; 30(1): 1-9
Artigo | IMSEAR | ID: sea-189511

RESUMO

Jatropha curcas (Euphorbiaceae) is a multiple purpose lacticiferous plant with potential for biodiesel production and medicinal uses. There is in the literature different analyses about the toxic and cytogenotoxic effects of J. curcas extracts, but few information about latex toxicity. In addition, few models were employed to evaluate the toxicity response to J. curcas latex, and the toxicity in in vivo mammal’s model has not been tested yet. The cytotoxic, mutagenic and antimutagenic potential of J. curcas latex were investigated using mouse bone marrow erythrocytes. The results indicated a cytotoxic and mutagenic potential of this latex to mammalian cells. But, when J. curcas latex was co-administrated with doxorubicin (DXR – chemotherapy medication), a reduction in the number of micronuclei was observed, indicating an interaction between J. curcas latex and DXR. The interaction of latex with DXR can cause a reduction in the activity of this drug and impair the treatment of its users. Moreover, there is a lack of data on herb–drug interactions, what should be more investigated to safeguard the wellbeing of patients.

5.
Journal of Medical Postgraduates ; (12): 910-914, 2019.
Artigo em Chinês | WPRIM | ID: wpr-818346

RESUMO

Objective Exosomes secreted from mouse bone marrow mesenchymal stem cells (BMSC) overexpressing the cardiomyocyte transcription factor GATA-4 (BMSCGATA-4-exosome) may play a key role in repairing myocardial injury. This study aimed to investigate the molecular regulatory network of BMSCGATA-4-exosome for inhibiting the apoptosis of cardiomyocytes. Methods Exosomes extracted from GATA-4-overexpressing BMSCs of the mouse cultured with miR-330-3p-mimic were cultured with myocardial cells under hypoxic and serum-free conditions for 24 hours (the experimental group), the overexpressed GATA-4, empty vector and BMSCs were taken as the confounding factor control (CFC), the myocardial cells cultured under hypoxic and serum-free conditions for 24 hours were used as the positive control, and those cultured under the normal condition for 24 hours as the negative control. The apoptosis rates of myocardial cells in different groups were measured by flow cytometry, the expression levels of miR-330-3p in the myocardial cells determined by RT-PCR, and those of the corresponding miR-330-3p target gene Ap2m1 and transcriptional protein Cnot4 detected by Western blot. Results CD29 was expressed in 99.71% of the mouse BMSCs, CD44 in 97.28%, SCA-1 in 99.40%, and CD11b overexpressed in only 0.1%. The early apoptosis rate of myocardial cells was significantly higher in the experimental than in the negative control group ([7.90 ± 0.34]% vs [2.30 ± 0.09]%, P < 0.05) but lower than in the positive control ([51.48 ± 0.40]%), BMSC ([18.32 ± 3.03]%), empty vector ([16.99 ± 2.93]%) and overexpressed GATA-4 groups ([10.22 ± 0.35]%) (P < 0.05). The expression of miR-330-3p in the myocardial cells was markedly higher in the experimental ([396.10 ± 1.02]%) than in the negative control ([1.37 ± 0.33]%), positive control ([0.26±0.32]%), BMSC ([1.40 ± 0.42]%), empty vector ([1.41 ± 0.27]%) and overexpressed GATA-4 groups ([3.80 ± 0.62]%) (P < 0.05). The expressions of Ap2m1 and Cont4 in the myocardial cells were remarkably decreased in the experimental group compared with those in the other five groups (P < 0.05). Conclusion Overexpressed BMSCGATA-4-exosomes suppress the apoptosis of myocardial cells by inhibiting the expression of the Ap2m1 protein via miR-330-3p.

6.
Immune Network ; : 116-120, 2017.
Artigo em Inglês | WPRIM | ID: wpr-51909

RESUMO

The induction of interleukin (IL)-32 in bone marrow (BM) inflammation is crucial in graft versus host disease (GvHD) that is a common side effect of allogeneic BM transplantation. Clinical trials on α-1 antitrypsin (AAT) in patients with GvHD are based on the preliminary human and mouse studies on AAT reducing the severity of GvHD. Proteinase 3 (PR3) is an IL-32-binding protein that was isolated from human urine. IL-32 primarily induces inflammatory cytokines in myeloid cells, probably due to PR3 expression on the membrane of the myeloid lineage cells. The inhibitory activity of AAT on serine proteinases may explain the anti-inflammatory effect of AAT on GvHD. However, the anti-inflammatory activity of AAT on BM cells remains unclear. Mouse BM cells were treated with IL-32γ and different inflammatory stimuli to investigate the anti-inflammatory activity of AAT. Recombinant AAT-Fc fusion protein inhibited IL-32γ-induced IL-6 expression in BM cells, but failed to suppress that induced by other stimuli. In addition, the binding of IL-32γ to PR3 was abrogated by AAT-Fc. The data suggest that the specific anti-inflammatory effect of AAT in mouse BM cells is due to the blocking of IL-32 binding to membrane PR3.


Assuntos
Animais , Humanos , Camundongos , Células da Medula Óssea , Medula Óssea , Citocinas , Doença Enxerto-Hospedeiro , Inflamação , Interleucina-6 , Interleucinas , Membranas , Mieloblastina , Células Mieloides , Serina Proteases
7.
The Journal of Advanced Prosthodontics ; : 157-164, 2014.
Artigo em Inglês | WPRIM | ID: wpr-162993

RESUMO

PURPOSE: This study focused on in vitro cell differentiation and surface characteristics in a magnesium coated titanium surface implanted on using a plasma ion source. MATERIALS AND METHODS: 40 commercially made pure titanium discs were prepared to produce Ti oxide machined surface (M) and Mg-incorporated Ti oxide machined surface (MM). Surface properties were analyzed using a scanning electron microscopy (SEM). On each surface, alkaline phosphatase (ALP) activity, alizarin red S staining for mineralization of MC3T3-E1 cells, and quantitative analysis of osteoblastic gene expression, were evaluated. Actin ring formation assay and gene expression analysis of TRAP and GAPDH performing RT-PCR were performed to characterize osteoclast differentiation on mouse bone marrow-derived macrophages (BMMs). RESULTS: MM showed similar surface morphology and surface roughness with M, but was slightly smoother after ion implantation at the micron scale. M was more hydrophobic than MM. No significant difference between surfaces on ALP activity at 7 and 14 days were observed. Real-time PCR analyses showed similar levels of mRNA expression of the osteoblast phenotype genes; osteopontin (OPN), osteocalcin (OCN), bone sialoprotein (BSP), and collagen 1 (Col 1) in cell grown on MM at 7, 14 and 21 days. Alizarin red S staining at 21 days showed no significant difference. BMMs differentiation increased in M and MM. Actin ring formation assay and gene expression analysis of TRAP showed osteoclast differentiation to be more active on MM. CONCLUSION: Both M and MM have a good effect on osteoblastic cell differentiation, but MM may speed the bone remodeling process by activating on osteoclast differentiation.


Assuntos
Animais , Camundongos , Actinas , Fosfatase Alcalina , Remodelação Óssea , Diferenciação Celular , Colágeno , Expressão Gênica , Sialoproteína de Ligação à Integrina , Macrófagos , Magnésio , Microscopia Eletrônica de Varredura , Osteoblastos , Osteocalcina , Osteoclastos , Osteopontina , Fenótipo , Plasma , Reação em Cadeia da Polimerase em Tempo Real , RNA Mensageiro , Propriedades de Superfície , Titânio
8.
Indian J Exp Biol ; 2011 Sept; 49(9): 704-710
Artigo em Inglês | IMSEAR | ID: sea-145182

RESUMO

The effects of aqueous (PnAq) and alcoholic (PnAl) extract (50-250 mg/kg) of P. niruri on in vivo gamma radiation induced chromosome aberration and in vitro antioxidant activity (50-500 µg/ml) were studied. The antioxidant activity was studied by measuring inhibition of hydroxyl radicals generated by the fenton reaction along with pro-oxidant and iron chelating ability. PnAl showed highly significant in vitro free radical scavenging ability when compared to DMSO above 250 µg/ml concentration. PnAq showed significant pro-oxidant activity while PnAl was devoid of it at the tested concentrations. Exposure to gamma radiation (4 Gy) caused 29.10 % increase in the frequency of chromosomal aberrations. Administration of PnAl (250 mg/kg) showed highly significant decrease in chromosomal aberrations compared to radiation treated group. Radioprotective potential of alcoholic extract was found to be more effective than the aqueous extract. Qualitative phytochemical investigation of PnAq and PnAl revealed the presence of sugars, flavonoids, alkaloid, lignans, polyphenols, tannins, coumarins and saponins. Higher radioprotective effect of the alcoholic extract may be attributed to rich presence of antioxidant polyphenolic compounds.

9.
Chinese Journal of Radiological Medicine and Protection ; (12): 670-673, 2010.
Artigo em Chinês | WPRIM | ID: wpr-385266

RESUMO

Objective To evaluate the role of mesenchymal stem cells (MSCs) derived from mouse bone and embryo dorsal aorta(DA) area in the treatment of irradiation induced lung injury of mouse model. Methods The mice were divided into four groups as normal control group, irradiation group,bone MSCs treatment group and DA MSCs treatment group. Immunohistochemical Analysis of lung tissue was observed after 9 months of treatment. Results Fibrosis and alveolar infiltration were scored in each group. The score for fibrosis and alveolar is 0. 17 in normal control group, 2 in irradiation group, 1 in bone MSCs treat group and 1.38 in DA MSCs treat group. Conclusion The extent of irradiation Induced Lung Injury could be reduced thorough the treatment of MSCs derived from mouse bone and embryos dorsal aorta ( DA ) area.

10.
Genet. mol. biol ; 32(2): 389-393, 2009. ilus, tab
Artigo em Inglês | LILACS | ID: lil-513974

RESUMO

The continuous production and release of chemicals into the environment has led to the need to assess their genotoxicity. Numerous organophosphorus compounds with different structures have been synthesized in recent years, and several oxaphosphole derivatives are known to possess biological activity. Such chemical compounds may influence proliferating cells and cause disturbances of the genetic material. In this study, we examined the cytotoxicity and genotoxicity of 4-bromo-N,N-diethyl-5,5-dimethyl-2,5-dihydro-1,2-oxaphosphol-2-amine 2-oxide (Br-oxph). In A. cepa cells, Br-oxph (10-9 M, 10-6 M and 10-3 M) reduced the mitotic index 48 h after treatment with the two highest concentrations, with no significant effect at earlier intervals. Mitotic cells showed abnormalities 24 h and 48 h after treatment with the two lowest concentrations but there were no consistent changes in interphase cells. Bone marrow cells from mice treated with Br-oxph (2.82 x 10-3 µg/kg) also showed a reduced mitotic index after 48 h and a greater percentage of cells with aberrations (principally chromatid and isochromatid breaks). These findings indicate the cytotoxicity and genotoxicity of Br-oxph in the two systems studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA