Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. microbiol ; 49(4): 695-702, Oct.-Dec. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974298

RESUMO

ABSTRACT Antarctica harbors a great diversity of microorganisms, including bacteria, archaea, microalgae and yeasts. The Pseudomonas genus is one of the most diverse and successful bacterial groups described to date, but only eight species isolated from Antarctica have been characterized. Here, we present three potentially novel species isolated on King George Island. The most abundant isolates from four different environments, were genotypically and phenotypically characterized. Multilocus sequence analysis and 16S rRNA gene analysis of a sequence concatenate for six genes (16S, aroE, glnS, gyrB, ileS and rpoD), determined one of the isolates to be a new Pseudomonas mandelii strain, while the other three are good candidates for new Pseudomonas species. Additionally, genotype analyses showed the three candidates to be part of a new subgroup within the Pseudomonas fluorescens complex, together with the Antarctic species Pseudomonas antarctica and Pseudomonas extremaustralis. We propose terming this new subgroup P. antarctica. Likewise, phenotypic analyses using API 20 NE and BIOLOG® corroborated the genotyping results, confirming that all presented isolates form part of the P. fluorescens complex. Pseudomonas genus research on the Antarctic continent is in its infancy. To understand these microorganisms' role in this extreme environment, the characterization and description of new species is vital.


Assuntos
Filogenia , Pseudomonas/isolamento & purificação , Pseudomonas/classificação , Fenótipo , Pseudomonas/genética , Microbiologia do Solo , DNA Bacteriano/genética , DNA Ribossômico/genética , RNA Ribossômico 16S/genética , Tipagem de Sequências Multilocus , Ilhas , Genótipo , Regiões Antárticas
2.
Braz. j. microbiol ; 43(2): 698-710, Apr.-June 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-644488

RESUMO

Symbiotic association of several genera of bacteria collectively called as rhizobia and plants belonging to the family Leguminosae (=Fabaceae) results in the process of biological nitrogen fixation, playing a key role in global N cycling, and also bringing relevant contributions to the agriculture. Bradyrhizobium is considered as the ancestral of all nitrogen-fixing rhizobial species, probably originated in the tropics. The genus encompasses a variety of diverse bacteria, but the diversity captured in the analysis of the 16S rRNA is often low. In this study, we analyzed twelve Bradyrhizobium strains selected from previous studies performed by our group for showing high genetic diversity in relation to the described species. In addition to the 16S rRNA, five housekeeping genes (recA, atpD, glnII, gyrB and rpoB) were analyzed in the MLSA (multilocus sequence analysis) approach. Analysis of each gene and of the concatenated housekeeping genes captured a considerably higher level of genetic diversity, with indication of putative new species. The results highlight the high genetic variability associated with Bradyrhizobium microsymbionts of a variety of legumes. In addition, the MLSA approach has proved to represent a rapid and reliable method to be employed in phylogenetic and taxonomic studies, speeding the identification of the still poorly known diversity of nitrogen-fixing rhizobia in the tropics.


Assuntos
Sequência de Bases , Bradyrhizobium/genética , Fixação de Nitrogênio/genética , Variação Genética , Técnicas In Vitro , Filogenia , Reação em Cadeia da Polimerase , RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Rhizobium leguminosarum/genética , Métodos , Simbiose/genética , Ecossistema Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA