Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Laboratory Medicine ; (12): 428-432, 2022.
Artigo em Chinês | WPRIM | ID: wpr-934391

RESUMO

With the advantage of being capable of detecting multiple targets at the same time, high throughput and cost-effective, multiplex nucleic acid detection technologies meet the need of large-scale nucleic acid screening and quantification. Multiplex polymerase chain reaction has been applied to detect pathogen, methylated DNA, mutated gene, and single nucleotide polymorphism typing. Isothermal amplification technologies, such as loop-mediated isothermal amplification and recombinase polymerase amplification are promising in the field of point-of-care testing. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein (Cas)-based multiplex nucleic acid detection technologies have become a hotspot due to their high sensitivity and specificity. Metagenomics sequencing plays a leading role in the detection of emerging pathogens and their gene mutation monitoring as well as tumor research. In this review, the advancements and future of multiplex acid detection technologies in clinical application are discussed.

2.
Chinese Journal of Schistosomiasis Control ; (6): 339-345, 2021.
Artigo em Chinês | WPRIM | ID: wpr-886756

RESUMO

Objective To establish a multiplex nucleic acid assay for rapid detection of Echinococcus multilocularis, E. granulosus and E. shiquicus based on the recombinase-aided isothermal amplification assay (RAA) and to preliminarily assess its diagnostic efficiency. Methods The mitochondrial genomic sequences of E. multilocularis (GenBank accession number: NC_000928), E. granulosus (GenBank accession number: NC_044548) and E. shiquicus (GenBank accession number: NC_009460) were used as target sequences, and three pairs of primers were designed based on the RAA primer design principle and synthesized for the subsequent multiple RAA amplification. The genomic DNA of E. multilocularis, E. granulosus and E. shiquicus at different concentrations and the recombinant plasmids containing the target gene at various concentrations were amplified to evaluate the diagnostic sensitivity of the multiplex RAA assay, and the genomic DNA of E. multilocularis, E. granulosus, E. shiquicus, Taenia multiceps, T. saginata, T. asiatica, Dipylidium caninum, T. hydatigena, Toxocara canis, Fasciola hepatica, T. pisiformis, Mesocestoides lineatus and Cryptosporidiumn canis was detected using the multiplex RAA assay to evaluate its specificity. In addition, the reaction condition of the multiplex RAA assay was optimized, and was then employed to detect the tissues with echinococcosis lesions, simulated canine fecal samples and field captured fox fecal samples to examine its application values. Results The multiplex RAA assay was effective to specifically amplify the mitochondrial gene fragments of E. multilocularis, E. granulosus and E. shiquicus within 40 min at 39 °C, with sequence lengths of 540, 430 bp and 200 bp, respectively. This multiplex RAA assay showed the minimum detection limits of 2.0, 2.5 pg/μL and 3.1 pg/μL for detection of the genomic DNA of E. multilocularis, E. granulosus and E. shiquicus, and presented the minimum detection limit of 200 copies/μL for detection of the recombinant plasmids containing E. multilocularis, E. granulosus and E. shiquicus target genes. This multiplex RAA assay was effective to simultaneously detect single and multiple infections with E. multilocularis, E. granulosus and E. shiquicus, but failed to amplify the genomic DNA of T. multiceps, T. saginata, T. asiatica, D. caninum, T. hydatigena, T. canis, F. hepatica, T. pisiformis, M. lineatus and C. canis. In addition, the optimized multiplex RAA assay was effective to detect all positive samples from the tissue samples with echinococcosis lesions, simulated canine fecal samples and field captured fox fecal samples, which was fully consistent with the detection of the single PCR assay. Conclusion A sensitive and specific multiplex nucleic acid assay for rapid detection of E. multilocularis, E. granulosus and E. shiquicus has been successfully established.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA