Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Genetic Medicine ; : 19-24, 2015.
Artigo em Inglês | WPRIM | ID: wpr-18090

RESUMO

Speech and language are uniquely human-specific traits, which contributed to humans becoming the predominant species on earth. Disruptions in the human speech and language function may result in diverse disorders. These include stuttering, aphasia, articulation disorder, spasmodic dysphonia, verbal dyspraxia, dyslexia and specific language impairment. Among these disorders, stuttering is the most common speech disorder characterized by disruptions in the normal flow of speech. Twin, adoption, and family studies have suggested that genetic factors are involved in susceptibility to stuttering. For several decades, multiple genetic studies including linkage analysis were performed to connect causative gene to stuttering, and several genetic studies have revealed the association of specific gene mutation with stuttering. One notable genetic discovery came from the genetic studies in the consanguineous Pakistani families. These studies suggested that mutations in the lysosomal enzyme-targeting pathway genes (GNPTAB, GNPTG and NAPGA) are associated with non-syndromic persistent stuttering. Although these studies have revealed some clues in understanding the genetic causes of stuttering, only a small fraction of patients are affected by these genes. In this study, we summarize recent advances and future challenges in an effort to understand genetic causes underlying stuttering.


Assuntos
Humanos , Afasia , Apraxias , Transtornos da Articulação , Dislexia , Disfonia , Ligação Genética , Lisossomos , Gagueira
2.
Journal of Biomedical Research ; : 65-70, 2013.
Artigo em Inglês | WPRIM | ID: wpr-38427

RESUMO

Uncovering enzyme (UCE), encoded by the human NAGPA, is a trans-Golgi enzyme that adds the mannose-6-phosphate recognition tag on lysosomal enzymes destined for the lysosome. Mutations in NAGPA are known to cause stuttering, a common speech disorder with unknown etiology. The human NAGPA gene is transcribed into two different forms, probably due to alternative splicing. One of them, known as a brain isoform, is lacking exon 8 (102-bp). We performed quantitative real-time PCR for the NAGPA brain and non-brain isoforms in a cDNA panel originating from 16 human tissues and 24 sub-brain regions. According to our findings, the relative quantity of the NAGPA brain isoform in the brain was 4.7 times more than that in the control cDNA, a pooled mixture of equal amounts of cDNAs from the 16 different tissues. Further analysis using the cDNA panel originating from 24 different sub-brain regions revealed that the cerebral cortex contained the largest amount of NAGPA brain isoform. Relative quantity in the cerebral cortex was 8.6 times more than that in the control cDNA (P=0.00004). The lowest quantity of this isoform was detected in cDNA from the pituitary gland. In conclusion, findings of the current study suggest that the cerebral cortex, expressing the highest quantity of the NAGPA brain isoform, might be the region associated with speech function.


Assuntos
Humanos , Processamento Alternativo , Encéfalo , Córtex Cerebral , DNA Complementar , Éxons , Lisossomos , Manosefosfatos , Diester Fosfórico Hidrolases , Hipófise , Isoformas de Proteínas , Reação em Cadeia da Polimerase em Tempo Real , Gagueira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA