Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Chinese Journal of Cancer Biotherapy ; (6): 135-145, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013474

RESUMO

@#目的:筛选果蝇Zeste基因增强子同源物2(EZH2)基因上游miRNA及lncRNA,分析其在胃癌细胞中的表达并验证其间的靶向关系,探讨它们对胃癌细胞增殖、迁移和凋亡的影响。方法:通过ENCORI、miRDB和Target Scan数据库查询并分析、筛选EZH2上游miRNA(has-miR-450b-5p),ENCORI数据库和DAINA数据库筛选has-miR-450b-5p上游lncRNA(lncRNA NEAT1),预测hsa-miR-450b-5p、lncRNA NEAT1与EZH2之间的结合位点,双荧光素酶报告基因实验验证hsa-miR-450b-5p与lncRNA NEAT1的结合关系。采用qPCR和WB法检测lncRNA NEAT1和EZH2在正常胃黏膜细胞(GES-1)与胃癌细胞(MGC-803、SGC-7901和MKN-28)中的表达量。按转染物的不同将MGC-803和SGC-7901细胞分为hsa-miR-450b-5p-mimic组、mimic-NC组、si-NEAT1组和si-NC组,转染36~48 h后qPCR法验证过表达及敲减效果;通过qPCR、WB法检测观察过表达hsa-miR-450b-5p对细胞中lncRNA NEAT1和EZH2 mRNA、蛋白表达的影响,以及敲减lncRNA NEAT1对hsa-miR-450b-5p和EZH2 mRNA表达的影响;CCK-8法、划痕愈合实验和流式细胞术分别检测敲减EZH2或敲减lncRNA NEAT1对细胞增殖、迁移和凋亡能力的影响。结果:生物信息学分析筛选获得EZH2上游miRNA和lncRNA为has-miR-450b-5p和lncRNA NEAT1,双荧光素酶报告基因实验验证了两者间存在靶向关系。lncRNA NEAT1和EZH2 mRNA、蛋白在胃癌细胞中均呈高表达(均P<0.05)。与mimic-NC组相比,hsa-miR-450b-5p-mimic组MGC-803、SGC-7901细胞中miR-450b-5p水平均显著升高,而EZH2 mRNA、蛋白和lncRNA NEAT1的表达量均显著降低(P<0.05或P<0.01);与si-NC组相比,si-NEAT1组MGC-803、SGC-7901细胞中lncRNA NEAT1和EZH2 mRNA的表达量均显著降低(均P<0.01),SGC-7901细胞中hsa-miR-450b-5p表达量显著升高(P<0.05)。敲减EZH2或敲减lncRNA NEAT1后,MGC-803、SGC-7901细胞的增殖、迁移能力均显著降低(均P<0.01)。结论:lncRNA NEAT1 和EZH2在胃癌细胞中均呈高表达,lncRNA NEAT1可通过hsa-miR-450b-5p促进EZH2的表达并提高胃癌MGC-803和SGC-7901细胞的增殖和迁移能力。

2.
Chinese Journal of Dermatology ; (12): 642-650, 2023.
Artigo em Chinês | WPRIM | ID: wpr-994526

RESUMO

Objective:To investigate the effect of Xidi Liangxue recipe on the proliferation and apoptosis of HaCaT cells through the long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) /microRNA (miR) -485-5p/signal transducer and activator of transcription 3 (STAT3) regulatory network. Methods:HaCaT cells were induced by interleukin-17 (IL-17), and the mRNA and protein expression of lncRNA NEAT1, miR-485-5p and STAT3 was detected in IL-17-induced HaCaT cells and normal human epidermal keratinocytes (NHEK) by quantitative PCR (qPCR) and Western blot analysis, respectively. The location of lncRNA NEAT1 and miR-485-5p in IL-17-induced HaCaT cells was observed by fluorescence in situ hybridization (FISH), and the targeted regulatory relationship among lncRNA NEAT1, miR-485-5p and STAT3 was verified by double-luciferase reporter gene assay. Chinese herbs were decocted according to the Xidi Liangxue recipe, SD rats were divided into two groups to be gavaged with the above decoctions (medicated group) or physiological saline (control group) for 5 days, and then serum samples were collected from the above two groups of rats separately. The IL-17-induced HaCaT cells were divided into 4 groups: control group treated with the control sera, lncRNA-NEAT1 overexpression group transfected with lncRNA-NEAT1 overexpression vectors and treated with the control sera, Xidi Liangxue recipe group treated with the medicated sera, and Xidi Liangxue recipe + lncRNA-NEAT1 overexpression group transfected with lncRNA-NEAT1 overexpression vectors and treated with the medicated sera. qPCR, Western blot analysis, flow cytometry, and cell counting kit (CCK8) assay were performed to determine the mRNA and protein expression of lncRNA NEAT1, miR-485-5p and STAT3, and to evaluate cell proliferation and apoptosis. The two independent samples t-test was used for comparisons between two groups, one-way analysis of variance for comparisons among multiple groups, and least significant difference (LSD) t-test for multiple comparisons. Results:The IL-17-induced HaCaT cell group showed significantly increased relative expression levels of lncRNA NEAT1 and STAT3 mRNA (1.84 ± 0.21, 2.20 ± 0.24, respectively) and significantly increased protein expression of STAT3 and p-STAT3 (1.27 ± 0.13, 2.43 ± 0.16, respectively), but significantly decreased expression level of miR-485-5p (0.32 ± 0.04) compared with the NHEK group (lncRNA NEAT1 and STAT3 mRNA: 1.00 ± 0.11, 1.00 ± 0.11, respectively, both P < 0.05; STAT3 and p-STAT3 protein: 1.00 ± 0.11, 1.00 ± 0.10, t = 2.54, 3.02, respectively, both P < 0.05; miR-485-5p: 1.00 ± 0.12, t = 2.94, P = 0.015). FISH demonstrated that miR-485-5p and lncRNA NEAT1 were co-located in the cytoplasm of HaCaT cells. The double-luciferase reporter gene assay showed that the relative activity of luciferase was significantly lower in the miR-485-5p group than in the negative control group (both P < 0.05) after the transfection with wild-type lncRNA NEAT1 or STAT3 recombinant plasmids, while there were no significant differences between the miR-485-5p group and negative control group after the transfection with mutant lncRNA NEAT1 or STAT3 recombinant plasmids (both P > 0.05). Compared with the control group, the lncRNA-NEAT1 overexpression group showed significantly increased expression of lncRNA NEAT1 and STAT3 (including STAT3 mRNA, STAT3 protein, and p-STAT3 protein) in HaCaT cells (all P < 0.05), but significantly decreased miR-485-5p expression ( P < 0.05) ; the Xidi Liangxue recipe group showed significantly decreased expression of lncRNA NEAT1 and STAT3 (all P < 0.05), but significantly increased miR-485-5p expression compared with the control group ( P < 0.05) ; significantly decreased expression of lncRNA NEAT1 and STAT3, but significantly increased miR-485-5p expression was observed in the Xidi Liangxue recipe + lncRNA-NEAT1 overexpression group compared with the lncRNA-NEAT1 overexpression group (all P < 0.05). After 24-, 48-, and 72-hour intervention, CCK8 assay showed that the proliferative activity of HaCaT cells was significantly higher in the lncRNA-NEAT1 overexpression group than in the control group (all P < 0.05), as well as in the Xidi Liangxue recipe + lncRNA-NEAT1 overexpression group than in the Xidi Liangxue recipe group (all P < 0.05), and the cellular proliferative activity was significantly lower in the Xidi Liangxue recipe + lncRNA-NEAT1 overexpression group and Xidi Liangxue recipe group than in the control group (all P < 0.05). The apoptosis rate was significantly lower in the lncRNA-NEAT1 overexpression group (5.84% ± 0.28%) than in the control group (14.75% ± 0.83%, LSD- t = 3.48, P = 0.002), but significantly higher in the Xidi Liangxue recipe group (35.72% ± 3.62%) than in the control group (LSD- t = 5.34, P = 0.001) ; the Xidi Liangxue recipe + lncRNA-NEAT1 overexpression group showed significantly increased apoptosis rate (27.64% ± 2.82%) compared with the lncRNA-NEAT1 overexpression group (LSD- t = 9.06, P < 0.001) . Conclusion:The Xidi Liangxue recipe could inhibit the proliferation of IL-17-induced HaCaT cells and promote their apoptosis, which may be related to the intervention in the lncRNA NEAT1/miR-485-5p/STAT3 regulatory network.

3.
Chinese Journal of Experimental Ophthalmology ; (12): 536-544, 2023.
Artigo em Chinês | WPRIM | ID: wpr-990879

RESUMO

Objective:To investigate the role of long non-coding RNA nuclear paraspeckle assembly transcript 1 (Neat1) in pyroptosis of ultraviolet B (UVB)-induced human lens epithelial cells (LECs) and to explore the possible mechanism.Methods:The human lens epithelial cell line HLE-B3 was cultured in vitro, and cells at log phase were exposed to ultraviolet B for 0, 2, 4 and 8 hours, respectively.The expression of cysteine aspartic acid-specific protease-1 (caspase-1), a protein related to pyroptosis, was detected by Western blot.The relative expression level of Neat1 in cells after different irradiation durations was determined by real-time quantitative PCR.Cell viability was determined by the cell counting kit-8 (CCK-8) method to screen the optimal irradiation duration for UVB-induced LECs pyroptosis, which was finally determined to be 4 hours.HLE-B3 cells were divided into negative siRNA transfection group, siRNA Neat1 transfection group, negative siRNA transfection+ irradiation group and siRNA Neat1 transfection+ irradiation group, and were transfected with corresponding reagents for 24 hours.The negative siRNA transfection+ irradiation group and siRNA Neat1 transfection+ irradiation group were irradiated with UVB for 4 hours after transfection.The cell viability was detected by the CCK-8 method.The pyroptosis rate was detected by flow cytometry.The expression levels of caspase-1, gasdermin D (GSDMD) and nod-like receptor protein 3 (NLRP3) proteins were detected by Western blot.The concentration of interleukin (IL)-1β was detected by enzyme-linked immunosorbent assay (ELISA). Ultrastructural changes in HLE-B3 cells were observed under a transmission electron microscope. Results:The grayscale of caspase-1 protein bands increased with the extension of irradiation duration.The relative expression levels of caspase-1 protein at 0, 2, 4 and 8 hours of irradiation were 0.05±0.01, 0.25±0.07, 0.51±0.04 and 0.74±0.02, respectively, with a statistically significant overall difference ( F=168.223, P<0.001), and significant differences were found in paired comparisons (all at P<0.05). With prolonged irradiation, the relative expression level of Neat1 mRNA increased and the cell viability decreased, with statistically significant differences in paired comparisons (all at P<0.05). Compared with negative siRNA transfection group, the cell viability was increased in siRNA Neat1 transfection group and decreased in negative siRNA transfection+ irradiation group, with statistically significant differences (both at P<0.01). Compared with negative siRNA transfection+ irradiation group, the cell viability was increased in siRNA Neat1 transfection+ irradiation group, showing a statistically significant difference ( P<0.05). The pyroptosis rate was significantly lower in negative siRNA transfection group and siRNA Neat1 transfection+ irradiation group than in negative siRNA transfection+ irradiation group, and the differences were statistically significant (both at P<0.01). The relative expression levels of caspase-1, NLRP3 and GSDMD proteins in negative siRNA transfection+ irradiation group were higher than those in negative siRNA transfection group and siRNA Neat1 transfection+ irradiation group and the differences were statistically significant (all at P<0.01). The concentration of IL-1β was significantly higher in negative siRNA transfection+ irradiation group than in negative siRNA transfection group and siRNA Neat1 transfection+ irradiation group, and the differences were statistically significant (all at P<0.05). Cell swelling, formed cell membrane pores, vacuolated cells and fuzzy mitochondrial cristae were seen in negative siRNA transfection+ irradiation group and siRNA Neat1 transfection+ irradiation group by transmission electron microscopy.Compared with negative siRNA transfection+ irradiation group, slighter cell swelling, fewer cell membrane pores and lighter mitochondrial swelling were seen in siRNA Neat1 transfection+ irradiation group. Conclusions:Neat1 is involved in human LECs pyroptosis induced by UVB through the classic pyroptosis pathway mediated by caspase-1.Knockdown of Neat1 can inhibit the pyroptosis of human LECs.

4.
Chinese Journal of Biochemistry and Molecular Biology ; (12): 159-164, 2022.
Artigo em Chinês | WPRIM | ID: wpr-1015749

RESUMO

Diabetes is a clinical syndrome caused by a variety of factors. It often causes multiple systemdamage, leading to chronic progressive lesions of the eye, kidney, blood vessels, heart, nerves and otherorgans. At present, its etiology and pathogenesis are not fully clarified, and there is a lack of effectivecure. Further exploration of the molecular regulatory mechanisms that drive diabetes and itscomplications, identifying specific biomarkers and molecular therapeutic targets, is undoubtedly aneffective strategy to prevent the onset and development of diabetes and improve the quality of life ofpatients. Long non-coding RNA (lncRNA) is an important regulator of body normal activity and diseasedevelopment. Abnormal expression and mutation are one of the main causes of diabetes and many otherdiseases. Nuclear paraspeckle assembly transcript 1 (NEAT1) is a newly discovered lncRNA molecule inrecent years. It has attracted much attention because of its important regulatory role and diverse biologicaleffects in diabetes and its complications. This article summarizes the molecular regulation mechanism andrelated biological functions of lncRNA NEAT1 in diabetes and its complications in order to provide a newscientific reference for early prevention, diagnosis and molecular targeted therapy of diabetes.

5.
Clinics ; 76: e2669, 2021. graf
Artigo em Inglês | LILACS | ID: biblio-1278915

RESUMO

OBJECTIVES: This study aimed to explore the efficacy of combination treatment with dendrobium mixture and metformin (Met) in diabetic cardiomyopathy (DCM) and its effects on NEAT1 and the Nrf2 signaling pathway. METHODS: H9c2 cells were maintained in medium supplemented with either low (5.5 mmol/L) or high (50 mmol/L) glucose. Male Sprague-Dawley rats were fed a high-glucose diet and administered a single, low dose of streptozotocin (35 mg/kg) via intraperitoneal injection to induce the development of DM. After induction of DM, the rats were treated with dendrobium mixture (10 g/kg) and Met (0.18 g/kg) daily for 4 weeks. Next, quantitative reverse transcription (qRT)-PCR and western blotting were performed to evaluate the expression levels of target genes and proteins. Flow cytometry was performed to assess apoptosis, and hematoxylin and eosin staining was performed to evaluate the morphological changes in rat cardiac tissue. RESULTS: In patients with diabetes mellitus (DM) and myocardial cells and heart tissues from rats with high glucose-induced DM, NEAT1 was downregulated, and the expression levels of Nrf2 were decreased (p<0.01, p<0.001). The combination of dendrobium mixture and Met upregulated the expression of NEAT1 which upregulated Nrf2 by targeting miR-23a-3p, resulting in reduced apoptosis and improved cardiac tissue morphology (p<0.01, p<0.001). CONCLUSION: Dendrobium mixture and Met upregulated the expression of NEAT1 in DCM, thereby inhibiting apoptosis of myocardial cells.


Assuntos
Humanos , Animais , Masculino , Ratos , Dendrobium , MicroRNAs , Diabetes Mellitus , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/tratamento farmacológico , Metformina , Apoptose , RNA Longo não Codificante/genética
6.
Protein & Cell ; (12): 641-660, 2020.
Artigo em Inglês | WPRIM | ID: wpr-828754

RESUMO

In mammalian cells, long noncoding RNAs (lncRNAs) form complexes with proteins to execute various biological functions such as gene transcription, RNA processing and other signaling activities. However, methods to track endogenous lncRNA dynamics in live cells and screen for lncRNA interacting proteins are limited. Here, we report the development of CERTIS (CRISPR-mediated Endogenous lncRNA Tracking and Immunoprecipitation System) to visualize and isolate endogenous lncRNA, by precisely inserting a 24-repeat MS2 tag into the distal end of lncRNA locus through the CRISPR/Cas9 technology. In this study, we show that CERTIS effectively labeled the paraspeckle lncRNA NEAT1 without disturbing its physiological properties and could monitor the endogenous expression variation of NEAT1. In addition, CERTIS displayed superior performance on both short- and long-term tracking of NEAT1 dynamics in live cells. We found that NEAT1 and paraspeckles were sensitive to topoisomerase I specific inhibitors. Moreover, RNA Immunoprecipitation (RIP) of the MS2-tagged NEAT1 lncRNA successfully revealed several new protein components of paraspeckle. Our results support CERTIS as a tool suitable to track both spatial and temporal lncRNA regulation in live cells as well as study the lncRNA-protein interactomes.

7.
Protein & Cell ; (12): 641-660, 2020.
Artigo em Inglês | WPRIM | ID: wpr-828590

RESUMO

In mammalian cells, long noncoding RNAs (lncRNAs) form complexes with proteins to execute various biological functions such as gene transcription, RNA processing and other signaling activities. However, methods to track endogenous lncRNA dynamics in live cells and screen for lncRNA interacting proteins are limited. Here, we report the development of CERTIS (CRISPR-mediated Endogenous lncRNA Tracking and Immunoprecipitation System) to visualize and isolate endogenous lncRNA, by precisely inserting a 24-repeat MS2 tag into the distal end of lncRNA locus through the CRISPR/Cas9 technology. In this study, we show that CERTIS effectively labeled the paraspeckle lncRNA NEAT1 without disturbing its physiological properties and could monitor the endogenous expression variation of NEAT1. In addition, CERTIS displayed superior performance on both short- and long-term tracking of NEAT1 dynamics in live cells. We found that NEAT1 and paraspeckles were sensitive to topoisomerase I specific inhibitors. Moreover, RNA Immunoprecipitation (RIP) of the MS2-tagged NEAT1 lncRNA successfully revealed several new protein components of paraspeckle. Our results support CERTIS as a tool suitable to track both spatial and temporal lncRNA regulation in live cells as well as study the lncRNA-protein interactomes.

8.
Protein & Cell ; (12): 641-660, 2020.
Artigo em Inglês | WPRIM | ID: wpr-827024

RESUMO

In mammalian cells, long noncoding RNAs (lncRNAs) form complexes with proteins to execute various biological functions such as gene transcription, RNA processing and other signaling activities. However, methods to track endogenous lncRNA dynamics in live cells and screen for lncRNA interacting proteins are limited. Here, we report the development of CERTIS (CRISPR-mediated Endogenous lncRNA Tracking and Immunoprecipitation System) to visualize and isolate endogenous lncRNA, by precisely inserting a 24-repeat MS2 tag into the distal end of lncRNA locus through the CRISPR/Cas9 technology. In this study, we show that CERTIS effectively labeled the paraspeckle lncRNA NEAT1 without disturbing its physiological properties and could monitor the endogenous expression variation of NEAT1. In addition, CERTIS displayed superior performance on both short- and long-term tracking of NEAT1 dynamics in live cells. We found that NEAT1 and paraspeckles were sensitive to topoisomerase I specific inhibitors. Moreover, RNA Immunoprecipitation (RIP) of the MS2-tagged NEAT1 lncRNA successfully revealed several new protein components of paraspeckle. Our results support CERTIS as a tool suitable to track both spatial and temporal lncRNA regulation in live cells as well as study the lncRNA-protein interactomes.

9.
Yonsei Medical Journal ; : 336-345, 2019.
Artigo em Inglês | WPRIM | ID: wpr-742550

RESUMO

PURPOSE: Long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been deemed an oncogene in many human cancers. However, the underlying mechanism of NEAT1 in nasopharyngeal carcinoma (NPC) progression remains largely unclear. MATERIALS AND METHODS: Quantitative real-time PCR assay was performed to assess the expression of NEAT1 and miR-34a-5p in NPC tissues and cells. Western blot analysis was used to observe cell epithelial to mesenchymal transition (EMT) and the activation of Wnt/β-catenin signaling in 5-8F cells. MiRNA directly interacting with NEAT1 were verified by dual-luciferase reporter assay and RNA immunoprecipitation. Cell proliferation ability was determined by CCK-8 assay, and cell migration and invasion capacities were assessed by transwell assays. An animal model was used to investigate the regulatory effect of NEAT1 on tumor growth in vivo. RESULTS: Our data revealed that NEAT1 is upregulated, while miR-34a-5p is downregulated in NPC tissues and cell lines. NEAT1 knockdown repressed tumor growth in vitro and in vivo. Additionally, we discovered that NEAT1 directly binds to miR-34a-5p and suppresses miR-34a-5p expression. Moreover, NEAT1 knockdown exerted suppression effects on cell proliferation, migration, invasion, and EMT by miR-34a-5p. NEAT1 knockdown blocked Wnt/β-catenin signaling via miR-34a-5p. CONCLUSION: Our study demonstrated that NEAT1 targets miR-34a-5p at least partly to drive NPC progression by regulating Wnt/β-catenin signaling, suggesting a potential therapeutic target for NPC.


Assuntos
Humanos , Western Blotting , Linhagem Celular , Movimento Celular , Proliferação de Células , Imunoprecipitação , Técnicas In Vitro , MicroRNAs , Modelos Animais , Oncogenes , Reação em Cadeia da Polimerase em Tempo Real , RNA , RNA Longo não Codificante , Sincalida
10.
Yonsei Medical Journal ; : 640-650, 2019.
Artigo em Inglês | WPRIM | ID: wpr-762096

RESUMO

PURPOSE: Alzheimer's disease (AD) is the most common neurodegenerative disease, with a rising prevalence worldwide. Long noncoding RNAs (lncRNAs) have been found to play important roles in the development and treatment of AD. However, the exact role of lncRNA nuclear enriched abundant transcript 1 (NEAT1) in neuronal damage in AD is largely unknown. MATERIALS AND METHODS: The AD model was established in SH-SY5Y and SK-N-SH cells via treatment with amyloid β1−42 (Aβ). The expression of NEAT1 and microRNA-107 (miR-107) was measured by quantitative real-time polymerase chain reaction. Cell viability and apoptosis were detected by MTT assay, immunocytochemistry, and flow cytometry. The expression of phosphorylated tau protein (p-Tau) was measured by Western blot. The interaction between NEAT1 and miR-107 was explored by bioinformatics analysis, luciferase activity, and RNA immunoprecipitation assays. RESULTS: NEAT1 expression was enhanced in Aβ-treated SH-SY5Y and SK-N-SH cells, and its knockdown attenuated Aβ-induced inhibition of viability and promotion of apoptosis and p-Tau levels. NEAT1 was indicated as a decoy of miR-107. miR-107 abundance was reduced in Aβ-treated cells, and its overexpression reversed Aβ-induced injury. Moreover, interference of miR-107 abated silencing of NEAT1-mediated inhibition of neuronal damage in Aβ-treated SH-SY5Y and SK-N-SH cells. CONCLUSION: LncRNA NEAT1 aggravated Aβ-induced neuronal damage by sponging miR-107, indicating a novel avenue for treatment of AD.


Assuntos
Doença de Alzheimer , Amiloide , Apoptose , Western Blotting , Sobrevivência Celular , Biologia Computacional , Citometria de Fluxo , Imuno-Histoquímica , Imunoprecipitação , Luciferases , Doenças Neurodegenerativas , Neurônios , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , RNA , RNA Longo não Codificante , Proteínas tau
11.
Chinese Journal of Cancer Biotherapy ; (6): 845-849, 2019.
Artigo em Chinês | WPRIM | ID: wpr-793337

RESUMO

@# Objective: To investigate the effects of long non-coding RNA nuclear enriched abundant transcript 1 (lncRNA NEAT1) on the proliferation of lung adenocarcinoma PC-9 cells and to explore its mechanism. Methods: qPCR was used to detect the expression level of lncRNA NEAT1 in human lung adenocarcinoma PC-9 cells and human embryonic lung diploid 2BS cells. The sequence of small interfering RNA(siRNA) targeting lncRNANEAT1 gene was designed and synthesized, and then transfected into PC-9 cells by liposome method. The expression level of NEAT1 in PC-9 cells before and after transfection was detected by qPCR. MTT and flow cytometry were used to detect the effect of lncRNANEAT1 knockdown on proliferation and cell cycle distribution of PC-9 cells, respectively. WB assay was used to detect the expressions of DNA damage-related proteins, namely, double-stranded DNA breaks (DSBs) biomarker γ-H2AX and ataxia-telangiectasia mutated (ATM), before and after transfection. Results: Compared with 2BS cells, lncRNA NEAT1 was highly expressed in PC-9 cells (P<0.05). The PC-9 cells with lncRNA NEAT1 knock-down were successfully established. After being transfected with siRNA for 12 h, the proliferation of PC-9 cells in siNEAT1 group and siNEAT2 group significantly decreased as compared with the blank control group and the empty transfection group (P<0.05). In the interference groups, cell cycle was arrested in G1 phase ([88.97±2.64]%, [88.15±1.48]% vs [84.5±1.72]%, P<0.05) and G2/M phase ([8.35±2.02]%, [8.11± 1.36]% vs [4.28±1.28]%, P<0.05). The expression levels of DNA damage-related proteinsATM and γ-H2AX in the interference groups were significantly increased (all P<0.05). Conclusion: lncRNA NEAT1 is highly expressed in lung adenocarcinoma PC-9 cells. lncRNA NEAT1 inhibits DNA damage and causes cell cycle at G1/M phase switch, and thus promotes the proliferation of lung adenocarcinoma cells.

12.
Basic & Clinical Medicine ; (12): 957-960, 2018.
Artigo em Chinês | WPRIM | ID: wpr-694016

RESUMO

Objective To investigate the expression of Neat1 in the differentiation of P19 cells induced by all-trans-retinoic acid(atRA) and to explore the effect of histone modification on its expression. Methods The differentiation of P19 cells was induced with the α-MEM culture media containing 0.5 μmol/L all-trans-retinoic( atRA) acid and the expression Mash1 which is the neural differentiation maker gene was measured. The expression of Neat1 was measured with RT-qPCR. The cells were treated with TSA, NAM or AdOx respectively to investigate the effect of the histone modifier inhibitor on the expression of Neat1. Results The model of differentiation of P19 cells induced by atRA was successfully constructed. Mash1 was significantly upregulated in the process of P19 cells differentiation.Neat1 was significantly upregulated with the induction of P19 cells treated with atRA(P<0.01). The TSA but not the NAM or AdOx could induce the expression of the Neat1.Conclusions The expression of Neat1 is significantly upregulated in the process of P19 differentiation induced by atRA and the the high level of histone acetylation maintained by TSA potentially induce the expression of Neat1.

13.
Journal of Medical Postgraduates ; (12): 240-244, 2017.
Artigo em Chinês | WPRIM | ID: wpr-510103

RESUMO

Objective Several physiological reactions of human periodontal ligament cells (hPDLCs) are effected by a varie-ty of long-chain non-coding RNA , and nicotine as the major risk factor of smoking-related periodontitis , would lead to many cytokines changes in hPDLCs .The aim of the study was to explore the effect of nicotine on the expression of lncRNA NEAT 1 and IL 8 in the nucleus of hPDLCs. Methods We cultured the hPDLCs in vitro and used the 4th generation cells for subsequent experiments .hPDLCs were randomly divided into 4 groups:control group , nicotine group ,α-BTX group, nicotine+α-BTX group.Control group:hPDLCs without any ir-ritation;nicotine group: 10-5 mol/L nicotine stimulated hPDLCs for 4h;α-BTX group:10-8 mol/Lα-BTX stimulated hPDLCs; nicotine+α-BTX group:10-5 mol/L nicotine+10-8 mol/Lα-BTX stimulated hPDLCs .Real-time quantitative PCR was taken to detect the expres-sion level of NEAT1 and downstream IL 8 mRNA.In addition, the protein expression of IL-8 was tested by ELISA. Results After we primary cultured the periodontal ligament tissue for 3 weeks, the cells around the tissue were arranged radially .After a stable passage, microscopic observation showed that hPDLCs were long spindle-shape or spindle-shape with clear contour and adherent growth .Com-pared with nicotine group , the expression of NEAT1-1, NEAT1-2, IL-8 mRNA in hPDLCs in other three groups were all decreased ( P0.05). Conclusion Nicotine can promote the expression of NEAT1 and IL-8 in hPDLCs, which suggets that NEAT 1 may be involved in the development of smoking-related periodontitis by promoting early inflammatory reaction .

14.
Chinese Journal of Microbiology and Immunology ; (12): 698-702, 2015.
Artigo em Chinês | WPRIM | ID: wpr-481399

RESUMO

Objective To investigate the expression of two long non-coding RNAs ( lncRNAs ) during HIV-1 infection, which were nuclear-enriched autosomal transcript 1 (NEAT1) and metastasis asso-ciated lung adenocarcinoma transcript 1 ( MALAT1 ) , and their relationships with disease progression . Methods Fifty-nine patients with HIV-1 infection and 21 healthy subjects were recruited in this study , of which 31 patients were highly active antiretroviral therapy ( HAART)-na?ve and 28 patients received HAART for more than one year with undetectable viral loads .Total RNAs were extracted from PBMC and plasma samples, respectively.The levels of NEAT1 and MALAT1 were detected by quantitative real time polymer-ase chain reaction .Results The levels of NAET1 and MALAT1 in PBMC from HAART na?ve patients were 3 to 5 times higher than those in healthy subjects (P0.05).Conclusion This study suggested that NEAT 1 and MALAT1 might be involved in the disease progression in patients with HIV-1 in-fection.The level of NEAT1 in plasma could be used as a potential biomarker of HIV-1 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA