Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. med. biol. res ; 50(7): e6011, 2017. graf
Artigo em Inglês | LILACS | ID: biblio-839318

RESUMO

Breast cancer is the most common cancer among women and its metastatic potential is responsible for numerous deaths. Thus, the need to find new targets for improving treatment, and even finding the cure, becomes increasingly greater. Ion channels are known to participate in several physiological functions, such as muscle contraction, cell volume regulation, immune response and cell proliferation. In breast cancer, different types of ion channels have been associated with tumorigenesis. Recently, voltage-gated Na+ channels (VGSC) have been implicated in the processes that lead to increased tumor aggressiveness. To explain this relationship, different theories, associated with pH changes, gene expression and intracellular Ca2+, have been proposed in an attempt to better understand the role of these ion channels in breast cancer. However, these theories are having difficulty being accepted because most of the findings are contrary to the present scientific knowledge. Several studies have shown that VGSC are related to different types of cancer, making them a promising pharmacological target against this debilitating disease. Molecular biology and cell electrophysiology have been used to look for new forms of treatment aiming to reduce aggressiveness and the disease progress.


Assuntos
Humanos , Feminino , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Canais de Sódio Disparados por Voltagem/metabolismo , Invasividade Neoplásica , Metástase Neoplásica
2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 487-493, 2016.
Artigo em Inglês | WPRIM | ID: wpr-285241

RESUMO

Neferine, a bisbenzylisoquinoline alkaloid in Lotus Plumule, was proved to have a wide range of biological activities. In the present study, using whole-cell patch-clamp technique, we investigated the effects of neferine on Nav1.5 channels that are stably expressed in HEK 293 cells. We found that neferine potently and reversibly inhibited Nav1.5 currents in a concentration dependent manner with a half-maximal inhibition (IC50) being 26.15 μmol/L. The inhibitory effects of neferine on Nav1.5 currents were weaker than those of quinidine at the same concentration. The steady-state inactivation curve was significantly shifted towards hyperpolarizing direction in the presence of 30 μmol/L neferine, while the voltage-dependent activation was unaltered. Neferine prolonged the time to peak of activation, increased the inactivation time constants of Nav1.5 currents and markedly slowed the recovery from inactivation. The inhibitory effect of neferine could be potentiated in a frequency-dependent manner. These results suggested that neferine can block Nav1.5 channels under the open state and inactivating state and it is an open channel blocker of Nav1.5 channels.


Assuntos
Humanos , Benzilisoquinolinas , Regulação da Expressão Gênica , Células HEK293 , Técnicas de Patch-Clamp , Quinidina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA