Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 570
Filtrar
1.
J. venom. anim. toxins incl. trop. dis ; 30: e20230043, 2024. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1534803

RESUMO

Background: The bioactive peptides derived from snake venoms of the Viperidae family species have been promising as therapeutic candidates for neuroprotection due to their ability to prevent neuronal cell loss, injury, and death. Therefore, this study aimed to evaluate the cytoprotective effects of a synthetic proline-rich oligopeptide 7a (PRO-7a; <EDGPIPP) from Bothrops jararaca snake, on oxidative stress-induced toxicity in neuronal PC12 cells and astrocyte-like C6 cells. Methods: Both cells were pre-treated for four hours with different concentrations of PRO-7a, submitted to H2O2-induced damage for 20 h, and then the oxidative stress markers were analyzed. Also, two independent neuroprotective mechanisms were investigated: a) L-arginine metabolite generation via argininosuccinate synthetase (AsS) activity regulation to produce agmatine or polyamines with neuroprotective properties; b) M1 mAChR receptor subtype activation pathway to reduce oxidative stress and neuron injury. Results: PRO-7a was not cytoprotective in C6 cells, but potentiated the H2O2-induced damage to cell integrity at a concentration lower than 0.38 μM. However, PRO-7a at 1.56 µM, on the other hand, modified H2O2-induced toxicity in PC12 cells by restoring cell integrity, mitochondrial metabolism, ROS generation, and arginase indirect activity. The α-Methyl-DL-aspartic acid (MDLA) and L-NΩ-Nitroarginine methyl ester (L-Name), specific inhibitors of AsS and nitric oxide synthase (NOS), which catalyzes the synthesis of polyamines and NO from L-arginine, did not suppress PRO-7a-mediated cytoprotection against oxidative stress. It suggested that its mechanism is independent of the production of L-arginine metabolites with neuroprotective properties by increased AsS activity. On the other hand, the neuroprotective effect of PRO-7a was blocked in the presence of dicyclomine hydrochloride (DCH), an M1 mAChR antagonist. Conclusions: For the first time, this work provides evidence that PRO-7a-induced neuroprotection seems to be mediated through M1 mAChR activation in PC12 cells, which reduces oxidative stress independently of AsS activity and L-arginine bioavailability.(AU)


Assuntos
Oligopeptídeos/efeitos adversos , Receptores Muscarínicos/química , Venenos de Crotalídeos/síntese química , Prolina , Estresse Oxidativo
2.
Chinese Pharmacological Bulletin ; (12): 229-233, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013624

RESUMO

Alzheimer' s disease (AD) is a progressive neurodegenerative disorder histologically characterized by the presence of senile plaques and neurofibrillary tangles (NFTs) found in and around pyramidal neurons in cortical tissue. Mounting evidence suggests regional increased iron load and dyshomeostasis have been associated with oxidative stress, oxidation of proteins and lipids, and cell death, and appears to be a risk factor for more rapid cognitive decline, thereby involved in multiple aspects of the pathophysiology of AD. Ferroptosis is a newly identified iron-dependent lipid peroxidation-driven cell death and emerging evidences have demonstrated the involvement of ferroptosis in the pathological process of AD. Notably, some novel compounds targeting ferroptosis can relieve AD-related pathological symptoms in AD cells and animal model and exhibit potential clinical benefits in AD patients. This review systematically summarizes the growing molecular and clinical evidence implicating ferroptosis in the pathogenesis of AD, and then reviews the application of ferroptosis inhibitors in mouse/cell models to provide valuable information for future treatment and prevention of AD.

3.
Chinese Pharmacological Bulletin ; (12): 70-75, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013603

RESUMO

Aim To study the neuroprotective effects of Herba siegesbeckiae extract on cerebral ischemia/ reperfusion rats and its mechanism. Methods Sixty SD rats were randomly divided into model group, low, middle and high dose groups of Herba siegesbeckiae, and Sham operation group, and the drug was given continuously for seven days. The degree of neurologic impairment was evaluated by mNSS, and the infarct volume was measured by MRI. The number of Nissl-posi- tive cells was detected by Nissl staining, and the apop- tosis was accessed by Tunel staining. Furthermore, the expression of Bax, Bcl-2 and NeuN was observed by Western blot, and the expression of NeuN was detected by immunofluorescence staining. The expression of IL- 1β, TNF-α and IL-6 mRNA was performed by RT- qPCR. Results The mNSS score and the volume of ischemic cerebral infarction in the model group were significantly increased, and Herba siegesbeckiae extract treatment significantly decreased the mNSS score and infarct volume (P<0.05, P<0.01). Herba siegesbeckiae extract could increase the number of Nissl-pos- itive cells and the expression of NeuN (P<0.01), and reduce the number of Tunel-positive cells (P<0.01). Western blot showed that Herba siegesbeckiae extract inhibited the expression of Bax, increased Bcl-2 and NeuN in ischemic brain tissue (P<0.01). RT-qPCR showed that Herba siegesbeckiae extract inhibited the expression of IL-1 β, TNF-α and IL-6 mRNA in the is-chemic brain tissue (P<0.01). Conclusions Herba siegesbeckiae extract can reduce the cerebral infarction volume, improve the neurological function damage, inhibit the apoptosis of nerve cells and the expression of inflammatory factors and promote the expression of NeuN, there by exerting protective effects on MCAO rats.

4.
Chinese Pharmacological Bulletin ; (12): 83-90, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013599

RESUMO

Aim To investigate whether alisol A (AA) could improve the blood brain barrier (BBB) mediated cortex cerebral ischemia-repeifusion injury (CIRI) by inhibiting matrix metalloproteinase 9 (MMP-9). Methods The global cerebral ischemia- reperfusion (GCI/R) model in mice was established, and the AA was intragastric injected subsequently for seven days. The modified neurological severity scores (mNSS), open field test and Y-maze test were applied to detect neurological function. Magnetic resonance spectroscopy (MRS) was used to detect relevant neu- rosubstance metabolism in cortex of mice. Transmission electron microscope (TEM) was employed to observe the ultrastructure of BBB in cortex. Western blot and immunohistochemistry were used to detect the MMP-9 level in cortex. The binding possibility of A A and MMP-9 was determined by molecular docking. Results Compared with Sham group, mice in GCI/R group have an increased mNSS score but decreased at total distance and center distance to total distance ratio in open field test as well as alternation rate in Y-maze test (P<0.01). While mice in GCI/R + AA group have a decreased mNSS score but increased at total distance and center distance to total distance ratio in open field test as well as alternation rate in Y-maze test (P<0.01) compared with GCI/R group. MRS results found that in cortex of GCI/R group mice, the level of GABA and NAA significantly decreased while the Cho, mI and Tau level increased (P<0.01). Whereas in GCI/R + AA group mice, the GABA and NAA level increased and the Cho, ml and Tau decreased significantly (P<0.01). By TEM we observed that the basilemma of cerebral microvessels collapsed, the lumen narrowed, the endothelial cells were active and plasma membranes ruffled, gaps between cells were enlarged and tight junctions were damaged and the end feet of astrocytes were swollen in GCI/R group mice. While in GCI/R + AA group mice, the lumen was filled, plasma membranes of endothelial cells were smooth, tight junctions were complete and end feet of astrocytes were in normal condition. Western blot and immunohistochemistry both found that the MMP-9 level increased in GCI/R group mice (P < 0.01) and decreased in GCI/R + AA group mice (P < 0.05). Molecular docking proved the binding between aliso A and MMP9 through TYR-50 and ARG-106, and the binding energy was calculated as -6.24 kcal · mol

5.
Rev. bras. cir. cardiovasc ; 39(1): e20200465, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1535533

RESUMO

ABSTRACT Cannulation strategies in aortic arch surgeries are a matter of immense discussion. Majority of time deep hypothermic circulatory arrest (DHCA) is the way out, but it does come with its set of demerits. Here we demonstrate a case with aortic arch dissection dealt with dual cannulation strategy in axillary and femoral artery without need for DHCA and ensuring complete neuroprotection of brain and spinal cord without hinderance of time factor. Inception of new ideas like this may decrease the need for DHCA and hence its drawbacks, thus decreasing the morbidity and mortality associated.

6.
Arq. neuropsiquiatr ; 81(7): 656-669, July 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1505752

RESUMO

Abstract Hepatic encephalopathy (HE) is a potentially reversible neuropsychiatric syndrome. Often, HE causes cognitive and motor dysfunctions due to an acute or chronic insufficiency of the liver or a shunting between the hepatic portal vein and systemic vasculature. Liver damage induces peripheral changes, such as in the metabolism and peripheral inflammatory responses that trigger exacerbated neuroinflammation. In experimental models, anti-inflammatory strategies have demonstrated neuroprotective effects, leading to a reduction in HE-related cognitive and motor impairments. In this scenario, a growing body of evidence has shown that peripheral and central nervous system inflammation are promising preclinical targets. In this review, we performed an overview of FDA-approved drugs and natural compounds which are used in the treatment of other neurological and nonneurological diseases that have played a neuroprotective role in experimental HE, at least in part, through anti-inflammatory mechanisms. Despite the exciting results from animal models, the available data should be critically interpreted, highlighting the importance of translating the findings for clinical essays.


Resumo A encefalopatia hepática (EH) é uma síndrome neuropsiquiátrica potencialmente reversível. Muitas vezes a EH causa disfunções cognitivas e motoras devido à insuficiência do fígado ou por um desvio entre a veia porta hepática e a vasculatura sistêmica. O dano no fígado provoca alterações periféricas, como no metabolismo e nas respostas inflamatórias periféricas, que desencadeiam uma neuroinflamação exacerbada. Em modelos experimentais, estratégias anti-inflamatórias têm demonstrado efeitos neuroprotetores, levando a uma redução dos prejuízos cognitivos e motores relacionados à EH. Neste cenário, evidências crescentes têm mostrado a inflamação periférica e no sistema nervoso central como um promissor alvo pré-clínico. Nesta revisão, abordamos uma visão geral de drogas e compostos naturais aprovados pelo FDA para o uso no tratamento de outras doenças neurológicas e não neurológicas, que tiveram papel neuroprotetor na EH experimental, pelo menos em parte, através de mecanismos anti-inflamatórios. Apesar dos resultados empolgantes em modelos animais, os dados avaliados devem ser criticamente interpretados, destacando a importância da tradução dos achados para ensaios clínicos.

7.
Rev. enferm. Cent.-Oeste Min ; 13: 4763, jun. 2023.
Artigo em Português | LILACS, BDENF | ID: biblio-1437036

RESUMO

Objetivo: mapear como o cuidado desenvolvimental prestado aos recém nascidos pré-termos tem sido desenvolvido nas unidades de terapia intensiva neonatal com a finalidade de sintetizar as evidências científicas atuais. Métodos: revisão de escopo com busca realizada em novembro de 2022 nas bases MEDLINE, Biblioteca Virtual em Saúde, CINAHL, Embase e Web of Science. Foram incluídos estudos que retratavam o cuidado desenvolvimental nas unidades neonatais, nos últimos cinco anos, sem restrição de idioma. Resultados: incluíram-se sete artigos e os principais temas foram: contato pele a pele, controle do ruído e luminosidade, participação da família e sensibilização e treinamento da equipe. Conclusão: esses cuidados contribuem para o desenvolvimento neuropsicomotor do prematuro, melhoram a assistência e reduzem a morbimortalidade e o tempo de internação.


Objective: To map the evolution of developmental care provided to preterm newborns in Neonatal Intensive Care Units to synthesize current scientific evidence. Methods: Bibliographic search for a scoping review was conducted in November 2022 on the MEDLINE, Virtual Health Library, CINAHL, Embase and Web of Science databases. Studies discussing developmental care in neonatal units in the past five years, without language restriction, were included. Results: The scoping review included articles, whose main topics were skin-to-skin contact, noise and light control, family participation, and team awareness and training. Conclusion: Developmental care practices contribute to the neuropsychomotor development of preterm infants, improve care, reduce morbidity and mortality, and the length of hospitalization.


Objetivo: mapear cómo se ha desarrollado la atención del desarrollo brindada a los recién nacidos pretérmino en las unidades de cuidados intensivos neonatales para sintetizar la evidencia científica actual. Métodos: revisión de alcance realizada en noviembre de 2022 mediante búsquedas en las bases de datos MEDLINE, Biblioteca Virtual en Salud, CINAHL, Embase y Web of Science. Se incluyeron estudios que trataron la atención del desarrollo en unidades neonatales, en los últimos cinco años, sin restricción de idioma. Resultados: se incluyeron siete artículos y los temas principales fueron contacto piel con piel, control de luz y ruido, participación familiar y sensibilización y entrenamiento del equipo. Conclusión: estos cuidados contribuyen al desarrollo neuropsicomotor de los prematuros, mejoran la asistencia y reducen la morbimortalidad y la estancia hospitalaria.


Assuntos
Humanos , Masculino , Feminino , Recém-Nascido , Recém-Nascido Prematuro , Terapia Intensiva Neonatal , Desenvolvimento Infantil , Neuroproteção , Cuidados de Enfermagem
8.
Rev. bras. cir. cardiovasc ; 38(1): 29-36, Jan.-Feb. 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1423096

RESUMO

ABSTRACT Introduction: Paraplegia may develop as a result of spinal cord ischemia-reperfusion injury in patients who underwent thoracoabdominal aortic surgery. The objective of this research is to determine the neuroprotective effects of ginsenoside Rd pretreatment in a rat model of spinal cord ischemia-reperfusion injury. Methods: Sprague-Dawley rats (n=36) were randomly assigned to three groups. The sham (n=12) and control (n=12) groups received normal saline orally. The Rd group (n=12) received ginsenoside Rd (100 mg/kg) orally 48 hours before the induction of spinal cord ischemia. Spinal cord ischemia was induced by aortic occlusion using a Fogarty balloon catheter in the Rd and control groups. A neurological assessment according to the motor deficit index and a histological evaluation of the spinal cord were performed. To evaluate the antioxidant activity of ginsenoside Rd, malondialdehyde levels and superoxide dismutase activity were determined. Further, the tissue levels of tumor necrosis factor-alpha and interleukin-1 beta were measured. Results: The Rd group showed significantly lower motor deficit index scores than did the control group throughout the entire experimental period (P<0.001). The Rd group demonstrated significantly greater numbers of normal motor neurons than did the control group (P=0.039). The Rd group exhibited decreased malondialdehyde levels (P<0.001) and increased superoxide dismutase activity (P=0.029) compared to the control group. Tumor necrosis factor-alpha and interleukin-1 beta tissue levels were significantly decreased in the Rd group (P<0.001). Conclusion: Ginsenoside Rd pretreatment may be a promising treatment to prevent ischemia-reperfusion injury in patients who undergo thoracoabdominal aortic surgery.

9.
Chinese journal of integrative medicine ; (12): 885-894, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1010300

RESUMO

OBJECTIVE@#To explore the effect and mechanism of schisandrin B (Sch B) in the treatment of cerebral ischemia in rats.@*METHODS@#The cerebral ischemia models were induced by middle cerebral artery occlusion (MCAO) and reperfusion. Sprague-Dawley rats were divided into 6 groups using a random number table, including sham, MCAO, MCAO+Sch B (50 mg/kg), MCAO+Sch B (100 mg/kg), MCAO+Sch B (100 mg/kg)+LY294002, and MCAO+Sch B (100 mg/kg)+wortmannin groups. The effects of Sch B on pathological indicators, including neurological deficit scores, cerebral infarct volume, and brain edema, were subsequently studied. Tissue apoptosis was identified by terminal transferase-mediated dUTP nick end-labeling (TUNEL) staining. The protein expressions involved in apoptosis, inflammation response and oxidative stress were examined by immunofluorescent staining, biochemical analysis and Western blot analysis, respectively. The effect of Sch B on phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling was also explored.@*RESULTS@#Sch B treatment decreased neurological deficit scores, cerebral water content, and infarct volume in MCAO rats (P<0.05 or P<0.01). Neuronal nuclei and TUNEL staining indicated that Sch B also reduced apoptosis in brain tissues, as well as the Bax/Bcl-2 ratio and caspase-3 expression (P<0.01). Sch B regulated the production of myeloperoxidase, malondialdehyde, nitric oxide and superoxide dismutase, as well as the release of cytokine interleukin (IL)-1 β and IL-18, in MCAO rats (P<0.05 or P<0.01). Sch B promoted the phosphorylation of PI3K and AKT. Blocking the PI3K/AKT signaling pathway with LY294002 or wortmannin reduced the protective effect of Sch B against cerebral ischemia (P<0.05 or P<0.01).@*CONCLUSIONS@#Sch B reduced apoptosis, inflammatory response, and oxidative stress of MCAO rats by modulating the PI3K/AKT pathway. Sch B had a potential for treating cerebral ischemia.

10.
Chinese Journal of Ocular Fundus Diseases ; (6): 489-493, 2023.
Artigo em Chinês | WPRIM | ID: wpr-995656

RESUMO

Objective:To observe the protective effect of etomidate (ET) on cultured retinal ganglion cells (RGC) with mechanical injury in vitro.Methods:New Sprague-Dawley rat RGC was cultured in vitro and identified by double immunofluorescent labeling of Thy1.1 and microtubule associated protein 2. The cultured primary cells were randomly divided into control group, RGC scratch group, ET low dose group (1 μmol/L), ET medium dose group (5 μmol/L) and ET high dose group (10 μmol/L). The RGC mechanical injury model was established by using iris knife to culture cells in RGC scratch group and ET group with different concentration. Seven days after modeling, the RGC survival rate of each group was detected by cell count Kit 8 proliferation assay. The apoptosis rate of RGC was detected by Annexin Ⅴ/propyl iodide double staining. Single factor analysis of variance was used to compare the groups. The pairwise comparison between groups was tested by the least significant difference method.Results:The survival rates of RGC in RGC scratch group, ET low dose group, ET medium dose group and ET high dose group were (72.60±2.97)%, (73.73±1.14)%, (79.19±1.79)% and (83.88±0.94)%, respectively. The RGC apoptosis rates of control group, RGC scratch group, ET low dose group, ET medium dose group and ET high dose group were (5.08±0.17)%, (18.67±1.24)%, (17.96±0.74)%, (15.11±0.56)% and (11.67±1.32)%, respectively. Comparison of RGC survival rate between groups: compared with RGC scratch group, the cell survival rate of ET low-dose group, ET medium-dose group and ET high-dose group was increased, and the difference between RGC scratch group and ET low-dose group was not statistically significant ( P=0.728); the differences between RGC scratch group, ET medium dose group and ET high dose group were statistically significant ( P<0.001); the difference between ET medium dose group and ET high dose group was statistically significant ( P=0.002). Comparison of apoptosis rate of RGC among groups: the apoptosis rate of RGC scratch group was significantly higher than that of control group, the difference was statistically significant ( P<0.001). Compared with RGC scratch group, the apoptosis rate of ET low-dose group, ET medium-dose group and ET high-dose group was decreased, and there was no statistical significance between RGC scratch group and ET low-dose group ( P=0.869). The differences of apoptosis rate between RGC scratch group, ET medium dose group and ET high dose group were statistically significant ( P<0.05). The difference of apoptosis rate between ET medium dose group and ET high dose group was statistically significant ( P=0.007). Conclusion:ET has neuroprotective effect on RGC cultured in vitro with mechanical injury, and the protective effect increases with the increase of ET dose in a certain range.

11.
Chinese Journal of Perinatal Medicine ; (12): 339-343, 2023.
Artigo em Chinês | WPRIM | ID: wpr-995107

RESUMO

Neonatal hypoxic-ischemic encephalopathy often causes long-term adverse effect on neurological system or even death in near-term or full-term infants, but no effective treatment is available currently. Studies have shown that xenon can reduce brain injury caused by hypoxia-ischemia and is promising in clinical practice. The possible mechanisms include antagonism to glutamic acid receptors, anti-apoptosis, promotion of cell repair and xenon preconditioning. This article reviews the mechanism and research progress on neuroprotection effect of xenon in the treatment of neonatal hypoxic-ischemic encephalopathy.

12.
Chinese Journal of Perinatal Medicine ; (12): 68-71, 2023.
Artigo em Chinês | WPRIM | ID: wpr-995066

RESUMO

Magnesium sulfate has been administered to pregnant women at imminent risk of preterm delivery for fetal neuroprotection, but its adverse effects and target population have not been fully studied. This paper summarizes the current protocols according to the existing guidelines and the latest research progress, including the gestational age at intervention, dose, duration of therapy and the need for re-administration, hoping to provide a reference for the clinical use of magnesium sulfate for fetal neuroprotection in China.

13.
Chinese Journal of Pharmacology and Toxicology ; (6): 521-522, 2023.
Artigo em Chinês | WPRIM | ID: wpr-992202

RESUMO

OBJECTIVE In this study,the effects of live Lactobacillus murinus(L.m)and heat-killed L.muri-nus(H-k L.m)on DA neuronal damage in rats and the underlying mechanisms were investigated.METHODS Male SD rats were randomly divided into five groups:vehicle group,L.m/H-k L.m(1×109 cfu)group,6-OHDH group,6-OHDH + L.m/H-k L.m(1×107 cfu)group,and 6-OHDH + L.m/H-k L.m(1×109 cfu)group.Wild-type and NLRP3 knockout mice were divided into three groups:sham(vehicle),6-OHDH,and 6-OHDH + H-k L.m(1×109 cfu).The model was established after five weeks of pre-administration.Motor ability of experimental mice was assessed by rotarod,mine,and stepping experiments;the expression of dopaminergic neuron markers—tyro-sine hydroxylase(TH),microglial cell markers—ionized calnexin 1(IBA-1),and NOD-like receptor family protein 3(NLRP3)in the substantia nigra was detected by immunohistochemistry and immunofluorescence experi-ments.The expression changes of TH,IBA-1,NLRP3,apoptosis-associated microparticle protein(ASC),cas-pase 1,and inflammatory factors such as interleukin-1β(IL-1β),IL-18,and tumor necrosis factor-α(TNF-α)were detected by immunoblotting experiments.RESULTS H-k L.m ameliorated 6-OHDH-induced motor dysfunctions and loss of substantia nigra DA neurons,while no protec-tion was shown in live L.m treatment.At the same time,H-k L.m reduced the activation of NLRP3 inflammasome in microglia and the secretion of pro-inflammatory factors,thus inhibiting the development of neuroinflammation.Fur-thermore,H-k L.m failed to display its original neuropro-tective properties in NLRP3 inflammasome knockout mice.CONCLUSION H-k L.m conferred neuroprotec-tion against DA neuronal loss via the inhibition of microglial NLRP3 inflammasome activation,these findings provide a promising potential for future applications of L.m,and also beneficial strategy for PD treatment.

14.
Chinese Journal of Pharmacology and Toxicology ; (6): 510-510, 2023.
Artigo em Chinês | WPRIM | ID: wpr-992191

RESUMO

OBJECTIVE We have previously shown that inhibition of phosphodiesterase-4(PDE4)protects against neuronal damage in models of Parkinson's dis-ease(PD).However,the mechanisms have not yet been completely revealed.Here we aimed to elucidate the pharmacological effects and mechanisms of action of rof-lupram(ROF),an novel PDE4 inhibitor,in experimen-tal models of PD.METHODS The survival rate,apopto-sis rate and toxicity level of SH-SY5Y cells were deter-mined by MTT,flow cytometry and lactate dehydroge-nase detection kit.At the same time,LYT staining was used to detect the changes of lysosome fluorescence intensity:Western blotting was used to detect the changes of lysosome associated proteins,Sirtuin1 and α-Syn;NAD/NADH assay kit was used to determine the change of NAD content.To explore whether SIRT1 inhibitor(EX527)and lysosomal inhibitor could block the effect of ROF.In addition,ROT was used to stimulate C57BL/6J mice to construct a mouse model of PD to verify the effect and mechanism of ROF.The changes of motor function were evaluated by behavioral experiments(pole climb-ing,bar rotating and balance beam experiments).Super-oxide dismutase kit and Western blotting were used to detect the changes of SOD activity and expression of related proteins in substantia nigra.RESULTS We showed that pretreatment with ROF significantly attenu-ated cell apoptosis in ROT-treated SH-SY5Y cells.Fur-thermore,ROF significantly enhanced the lysosomal function,as evidenced by the increased levels of mature cathepsin D(CTSD)and lysosomal-associated mem-brane protein 1(LAMP1)through increasing NAD+/NADH and the expression of sirtuin 1(SIRT1).Pretreatment with an SIRT1 inhibitor selisistat(SELI,10 μ mol·L-1)attenuated the neuroprotection of ROF,and ROF-increased expression levels of LAMP1 and mature CTSD.Moreover,inhibition of CTSD by pepstatin A(20 μmol·L-1)attenuated the protective effects of ROF.In vivo study was conducted in mice exposed to ROT(10 mg·kg-1·d-1,ig)for six weeks;then,ROT-treated mice received ROF(0.5,1 and 2 mg·kg-1·d-1,ig)for four weeks.ROF significantly ameliorated motor deficits,which was accompanied by increased expression levels of tyro-sine hydroxylase,SIRT1,mature CTSD,and LAMP1 in the substantia nigra pars compacta.CONCLUSION Taken together,these results demonstrate that ROF exerts a neuroprotective action in PD models.The mech-anisms underlying ROF neuroprotective effects appear to be associated with NAD+/SIRT1-dependent activation of lysosomal function.

15.
Chinese Journal of Experimental Ophthalmology ; (12): 173-177, 2023.
Artigo em Chinês | WPRIM | ID: wpr-990828

RESUMO

Exosomes are small vesicles with nanoscale lipid bilayer structures, which are secreted by various cells and are widely present in biological fluids, with complex contents and multiple biological functions.Exosomes play an important role in the development of glaucoma.Exosomes in the eye are involved in trabecular meshwork cell regulation by transporting glaucoma-associated proteins, regulating the Wnt signaling pathway, and affecting extracellular matrix turnover, thereby affecting the atrial circulation.Microglial exosomes mediate retinal neuroinflammation and related inflammatory signaling pathways.In addition, the stable presence of exosomes in intraocular fluid, in which differentially expressed proteins, RNA and other contents give exosomes potential as glaucoma biomarkers.In the treatment of glaucoma, stem cell-derived exosomes inhibit glial cell activation and neuroinflammation, reduce the loss of retinal ganglion cells, and act as neuroprotective agents.Exosomes can cross the blood-retinal barrier, deliver neurotrophic factors, drugs or other therapeutic molecules to target cells, regulate the function of target cells, and provide a new therapeutic tool for glaucomatous optic nerve degeneration.This paper summarized the research progress in the field of glaucoma and exosomes at home and abroad, and reviewed the role of exosomes and related mechanisms in the development, diagnosis, and treatment of glaucoma, expecting to provide new ideas for the early diagnosis and treatment of glaucoma.

16.
Journal of Xi'an Jiaotong University(Medical Sciences) ; (6): 202-207, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1005745

RESUMO

【Objective】 To observe the effect of puerarin on the concentration of Ca2+ and the expression of brain derived neurotrophic factor (BDNF) in hippocampal neurons of vascular dementia (VD) rats so as to explore the mechanism of puerarin in protecting nerve cells. 【Methods】 Male SD rats were randomly divided into sham operation group, model group, and puerarin intervention group. The vascular dementia model was established by ligating bilateral common carotid arteries at intervals of 3 days. Two weeks after the operation, the learning and memory abilities of the rats were evaluated by Morris water maze, and the expression of BDNF in the hippocampus of the rats was detected by immunohistochemistry and Western blotting. The mean fluorescence intensity was measured by flow cytometry to represent the intracellular free Ca2+ concentration. 【Results】 In the puerarin intervention group, the rats’ escape latency in Morris water maze was significantly shortened, the expression of BDNF in the hippocampus was significantly increased, and the concentration of Ca2+ in hippocampal neurons was decreased. Compared with the model group, the difference was statistically significant (all P<0.05). 【Conclusion】 Puerarin has neuroprotective effect on VD rats, and its mechanism may be related to the decrease of Ca2+ concentration in hippocampal neurons and the up-regulation of BDNF expression.

17.
Acta Pharmaceutica Sinica ; (12): 3710-3714, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1004646

RESUMO

Three new anthraquinones were isolated from the 80% ethanol extract of Prismatomeris tetrandra by silica gel, MCI, ODS column chromatography and high performance preparative liquid chromatography (HPLC). The structures of the new compounds were identified by mass spectrometry, nuclear magnetic resonance and other spectroscopic methods as 6-hydroxy-1,2,3-trimethoxy-7-methylanthracene-9,10-dione (1), 6-(hydroxymethyl)-1,2,3-trimethoxyanthracene-9,10-dione (2) and 7-hydroxy-6-(hydroxymethyl)-1,2-dimethoxyanthracene-9,10-dione (3). Compounds 1, 2 and 3 showed protective effects against monosodium glutamate-induced damage in SH-SY5Y neuroblastoma cells, with the cell survival rates elevated 18.45%, 4.31%, and 7.65%, respectively.

18.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 1073-1080, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1014709

RESUMO

Carnosic acid (CA) is a natural phenolic diterpene compound found in rosemary (Rosmarinus officinalis) characterized as an ortho-dihydroquinone - type molecule. Multiple lines of studies have shown that CA has potent neuroprotective effects in vitro and in vivo in Parkinson's disease (PD). The aim of the present review is to summarize the pharmacological neuroprotective actions of CA, and provide a comprehensive review of the molecular mechanism by which CA exert neuroprotective effect in PD. The current review highlights CA is a therapeutic potential for PD.

19.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 721-727, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1014616

RESUMO

AIM: To investigate the neuroprotective effect of ginsenoside Rg1 on rats with ischemic stroke and to investigate its mechanism of action. METHODS: Eighty-four SPF-grade SD male rats at about 13 weeks of age were randomly divided into 7 groups (n=12): sham-operated group, model group, Rg1 low-dose group, Rg1 medium-dose group, Rg1 high-dose group, Epac1 agonist group, and Epac1 inhibitor group. The model group, Rg1 low, medium and high dose groups, Epac1 agonist group and Epac1 inhibitor group were all used to establish a permanent focal cerebral ischemia rat model. Rats in the Rg1 low, medium and high dose groups were treated with 60, 120 and 240 μmol/L Rg1 administered by gavage at a fixed time every morning. The rats in the Epac1 agonist and Epac1 inhibitor groups were administered intraperitoneally at a fixed time each morning with a concentration of 1.0×10

20.
Chinese Pharmacological Bulletin ; (12): 1422-1425, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1013951

RESUMO

Dihydromyricetin is a dihydroflavone compound which widely exists in ampelopsis of grapevine family. It has many pharmacological effects, such as anti-inflammatory, antibacterial, anti-tumor, antioxidant, regulating blood glucose, reducing blood lipid, liver protection and so on. In recent years, it has been found that dihydromyricetin has a good neuroprotective effect and can play a certain pharmacological role in a variety of neurological diseases, including Alzheimer' s disease, depression, Parkinson's disease and stroke. The purpose of this paper is to review the research on the neuroprotective effect of dihydromyricetin in the past decade.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA