Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
1.
Braz. j. med. biol. res ; 57: e13379, fev.2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1557310

RESUMO

Ulcerative colitis (UC) is a difficult intestinal disease characterized by inflammation, and its mechanism is complex and diverse. Angiopoietin-like protein 2 (ANGPT2) plays an important regulatory role in inflammatory diseases. However, the role of ANGPT2 in UC has not been reported so far. After exploring the expression level of ANGPT2 in serum of UC patients, the reaction mechanism of ANGPT2 was investigated in dextran sodium sulfate (DSS)-induced UC mice. After ANGPT2 expression was suppressed, the clinical symptoms and pathological changes of UC mice were detected. Colonic infiltration, oxidative stress, and colonic mucosal barrier in UC mice were evaluated utilizing immunohistochemistry, immunofluorescence, and related kits. Finally, western blot was applied for the estimation of mTOR signaling pathway and NLRP3 inflammasome-related proteins. ANGPT2 silencing improved clinical symptoms and pathological changes, alleviated colonic inflammatory infiltration and oxidative stress, and maintained the colonic mucosal barrier in DSS-induced UC mice. The regulatory effect of ANGPT2 on UC disease might occur by regulating the mTOR signaling pathway and thus affecting autophagy-mediated NLRP3 inflammasome inactivation. ANGPT2 silencing alleviated UC by regulating autophagy-mediated NLRP3 inflammasome inactivation via the mTOR signaling pathway.

2.
Braz. j. med. biol. res ; 57: e13299, fev.2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1557328

RESUMO

25-hydroxycholesterol (25-HC) plays a role in the regulation of cell survival and immunity. However, the effect of 25-HC on myocardial ischemia/reperfusion (MI/R) injury remains unknown. Our present study aimed to investigate whether 25-HC aggravated MI/R injury through NLRP3 inflammasome-mediated pyroptosis. The overlapping differentially expressed genes (DEGs) in MI/R were identified from the GSE775, GSE45818, GSE58486, and GSE46395 datasets in Gene Expression Omnibus (GEO) database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using the database of Annotation, Visualization and Integration Discovery (DAVID). The protein-protein interaction (PPI) network of the overlapping DEGs was established using the Search Tool for the Retrieval of Interacting Genes (STRING) database. These bioinformatics analyses indicated that cholesterol 25-hydroxylase (CH25H) was one of the crucial genes in MI/R injury. The oxygen-glucose deprivation/reoxygenation (OGD/R) cell model was established to simulate MI/R injury. Western blot and RT-qPCR analysis demonstrated that CH25H was significantly upregulated in OGD/R-stimulated H9C2 cardiomyocytes. Moreover, knockdown of CH25H inhibited the OGD/R-induced pyroptosis and nod-like receptor protein 3 (NLRP3) inflammasome activation, as demonstrated by cell counting kit-8 (CCK8), lactate dehydrogenase (LDH), RT-qPCR, and western blotting assays. Conversely, 25-HC, which is synthesized by CH25H, promoted activation of NLRP3 inflammasome in OGD/R-stimulated H9C2 cardiomyocytes. In addition, the NLRP3 inhibitor BAY11-7082 attenuated 25-HC-induced H9C2 cell injury and pyroptosis under OGD/R condition. In conclusion, 25-HC could aggravate OGD/R-induced pyroptosis through promoting activation of NLRP3 inflammasome in H9C2 cells.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 269-279, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006580

RESUMO

IgA nephropathy is recognized as the most common primary glomerular disease, with up to 20%-40% of patients developing end-stage kidney disease within 20 years of onset. The deposition of IgA1-containing immune complexes targeting glycosylation defects in the mesangial region and the subsequent inflammation caused by T lymphocyte activation are considered as the main causes of IgA nephropathy, and innate immunity is also involved in the pathogenesis. Nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) is a newly discovered pattern recognition receptor expressed in renal intrinsic cells such as renal tubular epithelial cells, mesangial cells, and podocytes. Activated by external stimuli, NLRP3 can form NLRP3 inflammasomes with apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). The NLRP3 inflammasome can activate cysteine aspartate-specific protease-1 (Caspase-1), causing the maturation and release of interleukin-18 (IL-18) and interleukin-1β (IL-1β) involved in inflammation. Increasing evidence has suggested that NLRP3 inflammasomes are involved in the pathogenesis and progression of IgA nephropathy and associated with the damage of renal intrinsic cells such as podocytes, mesangial cells, endothelial cells, and renal tubular epithelial cells. Chinese medicine can regulate inflammatory cytokines and their signaling pathways by acting on NLRP3 inflammasomes and related molecules, exerting therapeutic effects on IgA nephropathy. This article introduces the role of NLRP3 inflammasomes in IgA nephropathy and reviews the clinical and experimental research progress of Chinese medicine intervention in IgA nephropathy via NLRP3 inflammasomes, aiming to provide a reference for further research and application of Chinese medicine intervention in the NLRP3 inflammasome as a new therapeutic target.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 39-47, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006553

RESUMO

ObjectiveTo explore the effects of Wenyang Jieyu prescription (WJP) on neuroinflammation and synaptic plasticity in the mouse model of depression induced by maternal separation combined with restraint stress. MethodThe mice on postnatal day 0 (PD0) were randomized into a control group and a modeling group. Maternal separation combined with restraint stress was employed to establish the mouse model of depression. After the removal of female mice, the modeled mice were randomized into model, Wenyang prescription (5.85 g·kg-1), Jieyu prescription (12.03 g·kg-1), WJP (16.71 g·kg-1), and fluoxetine (2.6 mg·kg-1) groups on the weaning day (PD21), with 15 mice in each group. The mice were administrated with corresponding drugs mixed with the diet from PD21 to PD111. The sucrose preference test, open field test, O-maze test, and novel object recognition test were then carried out to evaluate the depression state, memory, and learning ability of the mice. Immunohistochemistry (IHC) was employed to observe the ionized calcium-binding adapter molecule-1 (Iba-1) in hippocampal microglia. High performance liquid chromatography (HPLC) was employed to measure the content of noradrenaline (NE) and epinephrine (E) in the hippocampus. Enzyme-linked immunosorbent assay (ELISA) was employed to determine the content of interleukin (IL)-18 and IL-1β in the hippocampus. Western blot was employed to determine the protein levels of NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), cysteine aspartate-specific protease-1 (Caspase-1), IL-1β, synaptophysin (Syn), and postsynaptic density 95 (PSD95). ResultCompared with control group, the model group showed decreased sucrose preference rate, time spent in central zone within 5 min, total movement distance, time spent in the open arm, and cognition index (P<0.05, P<0.01). The microglia in the model group presented amoeba-like appearance, the Iba1 increased. Moreover, the model group showed decreased content of NE and E (P<0.01), elevated levels of IL-1β and IL-18 (P<0.01), down-regulated protein levels of PSD95 and Syn (P<0.05, P<0.01), and up-regulated protein levels of NLRP3, ASC, Caspase-1, and IL-1β (P<0.05, P<0.01). Compared with model group, WJP and fluoxetine increased the sucrose preference rate, time spent in central zone within 5 min, total movement distance, time spent in the open arm, and cognition index (P<0.05, P<0.01). They recovered the microglia and the Iba1 decreased. Moreover, the drugs increased the content of NE and E (P<0.05, P<0.01), lowered the levels of IL-1β and IL-18 (P<0.01), up-regulated the protein levels of PSD95 and Syn (P<0.01), down-regulated the protein levels of NLRP3, ASC, Caspase-1, and IL-1β (P<0.05, P<0.01). ConclusionWJP can treat the depressive behavior induced by maternal separation combined with restraint stress in mice, with the performance outperforming Wenyang prescription and Jieyu prescription. It may alleviate the neuroinflammation induced by microglia and improve the synaptic plasticity by regulating the NLRP3 pathway and increasing neurotransmitters in the hippocampus.

5.
Journal of Traditional Chinese Medicine ; (12): 94-102, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005117

RESUMO

ObjectiveTo investigate the possible mechanism of Shenqi Jianxin Formula (参芪健心方) in the treatment of chronic heart failure (CHF) from the perspective of pyroptosis. MethodsFifty-two rats were randomly divided into sham operation group (n=8) and modeling group (n=44). In the modeling group, the anterior descending branch of the left coronary artery was ligated to construct CHF rat model. Forty successfully-modelled rats were randomly divided into model group, Entresto group, Shenqi Jianxin Formula group, MCC950 group and the combination group (Shenqi Jianxin Formula plus MCC950), with 8 rats in each group. In Shenqi Jianxin Formula group, 7.4 g/(kg·d) of Shenqi Jianxin Formula was given by gavage, while in Entresto group, 68 mg/(kg·d) of Entresto suspension was given by gavage; in MCC950 group, MCC950 was injected intraperitoneally with 10 mg/kg once every other day, and in the combination group, 7.4 g/(kg·d) of Shenqi Jianxin Formula was given by gavage, and MCC950 was injected intraperitoneally with 10 mg/kg once every other day; 10 ml/(kg·d) of saline was given by gavage in the sham operation group and the model group. After 3 weeks of continuous intervention, serum brain B-type natriuretic peptide (BNP), creatine kinase isoenzyme MB (CK-MB), interleukin 1β (IL-1β), and interleukin 18 (IL-18) levels were detected by ELISA; HE staining and MASSON staining were used to observe pathological changes in rat myocardium. Except for the Entresto group, western blot technique was used to detect the expression of NOD-like receptor protein 3 (NLRP3), caspase-1, and apoptosis-associated speck-like protein possessing a caspase-recruiting domain (ASC); RT-PCR was used to detect the expression of NLRP3 and caspase-1 mRNA. ResultsCompared with the sham operation group, HE staining of rats in the model group showed obvious myocardial injury, while MASSON staining showed increased area of collagen fibrosis, and serum BNP, CK-MB, IL-1β, IL-18, myocardial tissue NLRP3, caspase-1, ASC protein expression and NLRP3, caspase-1 mRNA expression were all elevated (P<0.05). Compared with those in the model group, cardiomyocyte injury of rats and collagen fibrosis area were reduced, and serum BNP, CK-MB, IL-1β, and IL-18 contents were all reduced in Shenqi Jianxin Formula group, Entresto group, MCC950 group, and the combination group; except for Entresto group, myocardial tissue NLRP3, caspase-1, ASC protein expression and NLRP3, caspase-1 mRNA expression were reduced in the remaining three medication group (P<0.05). Compared with Shenqi Jianxin Formula group, the MCC950 group and the combination group showed decreased serum IL-1β and IL-18 content, collagen fibrosis area, myocardial tissue NLPR3, caspase-1 protein expression, and caspase-1 mRNA expression, and decreased ASC and NLRP3 mRNA expression was shown in the combination group (P<0.05). Compared with MCC950 group, collagen fibrosis area was reduced, and serum IL-18 content, NLRP3, caspase-1 mRNA expression were reduced in the combination group (P<0.05). ConclusionShenqi Jianxin Formula can effectively improve the myocardial injury and heart failure in rats with CHF, and its mechanism may be related to the inhibition of cardiomyocyte pyroptosis through NLPR3/Caspase-1 pathway to reduce the level of intramyocardial inflammation. The combined use of MCC950 with Shenqi Jianxin Formula could more effectively inhibite myocardial pyroptosis, with better therapeutic result than single use of each part.

6.
Journal of Public Health and Preventive Medicine ; (6): 74-78, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005910

RESUMO

Objective To investigate the potential effect and mechanism of curcumin in inhibiting synaptic injury in the cortex of rats with cerebral ischemia-reperfusion. Methods Sprague-Dawley rats were divided into sham-operated group, model group, low-dose curcumin (50 mg/kg) group, and high-dose curcumin (100 mg/kg) group. A model of middle cerebral artery occlusion for 2 hours and reperfusion for 24 hours was constructed, and curcumin was administered. Based on the neurological function score, the effects of curcumin on cerebral infarct volume, synaptic ultrastructure changes, inflammatory cell infiltration, and the expression of NLRP3, Caspase-1, Synapsin1, and CAMKⅡ were observed after the end of the animal treatment. Results The neurological function scores were 0, 3.25±0.43, 2.50±0.50, and 1.50±0.50 for the sham-operated group, model group, low-dose curcumin group, and high-dose curcumin group, respectively. The percentage of cerebral infarct volume was 0, (38.89±2.21)%, (33.48±1.77)%, and (23.69±2.19)%, respectively. Compared with the sham operation group, the model group had severe synaptic ultrastructure damage, extensive inflammatory cell infiltration, significantly increased expression of Caspase-1 and NLRP3 (P < 0.5), and significantly decreased expression of Synapsin1 and CAMKⅡ (P < 0.5). Curcumin treatment significantly inhibited synaptic damage, reduced inflammatory cell infiltration, decreased the expression of Caspase-1 and NLRP3 (P < 0.5), and increased the expression of Synapsin1 and CAMKII (P < 0.5), when compared with the model group. Conclusion Ischemia-reperfusion-mediated synaptic injury in rat brain triggers an inflammatory response in cortical nerve cells, and curcumin alleviates synaptic damage and reduces brain injury by inhibiting inflammatory factor levels.

7.
Chinese Pharmacological Bulletin ; (12): 529-536, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013646

RESUMO

Aim To investigate the mechanism by which formononetin (FN) inhibits mitochondrial dynamic-related protein 1 (DRP1) -NLRP3 axis via intervening the generation of ROS to reduce allergic airway inflammation. Methods In order to establish allergic asthma mouse model, 50 BALB/c mice aged 8 weeks were divided into the control group, model group, FN treatment group and dexamethasone group after ovalbumin (OVA) induction. Airway inflammation and collagen deposition were detected by HampE and Masson staining. Th2 cytokines and superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and IgE levels in bronchoalveolar lavage fluid (BALF) were measured by ELISA, ROS in BEAS-2B cells was assessed by DCFH-DA staining, DRP1 expression in lung tissue and BEAS-2B cells was detected by immunohistochemistry and immunofluorescence, and the DRP1-NLRP3 pathway was analyzed by immunoblotting. Results FN treatment could effectively ameliorate the symptoms of asthmatic mouse model, including reducing eosinophil accumulation, airway collagen deposition, decreasing Th2 cytokine and IgE levels, reducing ROS and MDA production, increasing SOD and CAT activities, and regulating DRP1-NLRP3 pathway-related protein expression, thereby relieving inflammation. Conclusion FN ameliorates airway inflammation in asthma by regulating DRP1-NLRP3 pathway.

8.
Chinese Pharmacological Bulletin ; (12): 447-454, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013636

RESUMO

Aim Excessive cerebral inflammation caused by chronic alcohol intake is an important risk factor for central nervous system injury. The purpose of this study was to explore the protective effect of konjac mannan oligosaccharide (KMOS) on central nervous system inflammation in alcohol-fed mice and its mechanism. Methods The chronic alcohol fed model of C57BL/6J mice was established using Gao-binge method. And the different doses of KMOS were gavaged every day for 6 weeks. The neuronal damage and microglia activation were evaluated in cerebral cortex and hippocampus. The damage of colon tissue was assessed and serum LPS concentrations were measured. In vitro, Caco-2 cells were stimulated with LPS to establish intestinal mucosal injury model. Results Chronic alcohol intake can cause brain neuron damage in mice, and different doses of KMOS effectively reduced the activation state of microglia, decreased the expression of inflammatory factors caused by the activation of the NLRP3 inflammasome and alleviated neuronal damage in the brain tissue of alcohol-fed mice. The results of colon tissue analysis showed that the use of KMOS effectively reduced the concentration of endotoxin LPS in serum of alcohol-fed mice, alleviated the pathological injury and inflammatory response of colon tissue, and enhanced the expression of Occludin in intestinal tissue. In vitro experiments also showed that KMOS significantly inhibited the inflammatory reaction of Caco-2 cells exposed to alcohol and increased the expression of Occludin protein. Conclusions KMOS treatment effectively inhibited intestinal inflammation caused by alcohol intake, repaired intestinal barrier to prevent the entry of intestinal LPS into brain tissue, decreased the activation of microglia, and then improved brain neuron damage. KMOS had the potential to prevent alcoholic nerve injury.

9.
Chinese Pharmacological Bulletin ; (12): 308-316, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013586

RESUMO

Aim To explore the effect of berberine (B E) on RSV infected HEp-2 cells and the related mechanism. Methods HEp-2 cells were infected with RSV and treated with BE. Cell viability was assessed using the CCK-8 assay. Protein expression levels of NLRP3, ASC, caspase-1, PINK1, Parkin, Beclinl, p62, LC3 I,LC3 II,and BNIP3 in HEp-2 cells were detected by Western blot. The secretion level of IL-1 p in HEp-2 cells was measured using ELISA. Apoptosis rate and mitochondrial membrane potential of HEp-2 cells were examined by flow cytometry. Mitochondrial ROS (mtROS) in HEp-2 cells was detected through MitoSOX staining. Colocalization of mitochondria and autophagosomes in HEp-2 cells was investigated using immunofluorescence staining. Cyclosporin A was used for validation experiments. Results BE could significantly improve the activity of RSV-infected HEp-2 cells,reduce the apoptosis rate (P < 0. 05), and decrease the activation level of NLRP3 inflammasomes and IL-lp level (P <0. 05); BE improved mitochondrial function by increasing mitochondrial membrane potential and ATP levels,and reduced mtROS. BE significantly promoted the colocalization of mitochondria-autophagosome in RSV infected cells, inducing PINK1/ Parkin and BNIP3 to mediate mitochondrial autophagy; cyclosporine A aggravated RSV infection. Conclusions BE has protective effects on HEp-2 cells infected by RSV. The mechanism may be related to the inhibitory effect of BE on the production of mtROS and the activation of NLRP3 inflammasomes by inducing PINK1/ Parkin and BNIP3-mediated mitochondrial autophagy.

10.
China Pharmacy ; (12): 813-818, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013542

RESUMO

OBJECTIVE To explore the protective effect and mechanism of Longshengzhi capsules on cerebral ischemia- reperfusion injury in rats. METHODS The model of middle cerebral artery occlusion (MCAO) was established by using the improved thread occlusion method. The experiment was divided into six groups: sham surgery group (only separating blood vessels without inserting thread plugs, given the same volume of normal saline), model group (modeling, given the same volume of normal saline), nimodipine group (positive control, modeling, dose of 20 mg/kg), and low-dose, medium-dose, and high-dose groups of Longshengzhi capsules (modeling, doses of 0.72, 1.44 and 2.88 g/kg, respectively), with 10 mice in each group. Each group was given corresponding medication solution/normal saline by gavage, once a day, for 7 consecutive days. One hour after the last administration, the Zea Longa scoring method was used to score the neurological deficits in each group of rats, and the ABC enzyme-linked immunosorbent assay was used to detect the serum levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in rats; TTC staining was used to observe the volume of cerebral infarction in rats and calculate the cerebral infarction volume ratio. Hematoxylin eosin staining was used to observe the pathological changes in the brain tissue of rats. Immunohistochemical staining was used to detect the positive expression of NLRP3 protein in the brain tissue of rats. Real-time fluorescence quantitative PCR was used to detect mRNA relative expressions of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) in the brain tissue of rats. Western blot assay was adopted to detect the relative expressions of TLR4, NLRP3 and phosphorylated NF-κB (p-NF-κB) protein in the brain tissue of rats and its intracellular NF-κB protein. RESULTS Compared with the sham surgery group, the neural dysfunction score, serum levels of TNF-α and IL-6, cerebral infarction volume ratio, relative expression levels of NF-κB and TLR4 mRNA, as well as protein relative expressions of TLR4, NLRP3 and p-NF-κB in the brain tissue, and relative protein expression of intracellular NF-κB were increased significantly in the model group (P<0.01); the enlarged gap and significant edema were observed in cortical nerve cells of brain tissue in rats, with a large amount of inflammatory cell infiltration; the positive expression of NLRP3 protein in brain tissue of rats obviously increased. Compared with the model group, the levels of the above indicators in the medium-dose and high-dose groups of Longshengzhi capsules, as well as the Nimodipine group, were reversed to varying degrees, and most differences were statistically significant (P<0.05 or P<0.01); the pathological morphology observation showed a significant improvement, and the positive expression of NLRP3 protein in the brain tissue of rats was obviously reduced. CONCLUSIONS Longshengzhi capsules may inhibit TLR4/NF-κB/NLRP3 signaling pathway and neuroinflammatory response, thereby achieving a protective effect against cerebral ischemia-reperfusion injury in rats.

11.
International Eye Science ; (12): 572-576, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1012823

RESUMO

The NLRP3 inflammasome is a cellular multimeric protein complex that plays a crucial role in inflammation and immune responses. It consists of three main components: Nod-like receptor protein 3(NLRP3), apoptosis-associated speck-like protein containing(ASC)and cysteine protease 1(caspase-1). Uveitis is a broad term encompassing a range of inflammatory diseases that primarily affect the iris, ciliary body, vitreous, retina and choroid. It is considered a major cause of blindness globally. Numerous studies have demonstrated the involvement of NLRP3 inflammasome in the onset and progression of uveitis, indicating its potential as a significant therapeutic target for uveitis in the future. This article provides an overview of the structure, biological functions and activation pathways of the NLRP3 inflammasome, as well as the current research progress on its association with different types of uveitis. Additionally, it discusses the application potential of the NLRP3 inflammasome in the treatment of uveitis.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 290-298, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1012719

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease often characterized by cognitive impairment in clinical practice. The main pathogenesis includes β amyloid protein (Aβ) excessive deposition, neuroinflammatory response, Tau protein hyperphosphorylation, and other factors, and currently only a few chemical drugs have been approved for clinical treatment of AD. The mechanism of action is relatively single, so it is imperative to find new treatment strategies. Traditional Chinese medicine theory believes that the loss of nourishment in the brain and marrow, as well as the loss of vital energy, is the internal mechanisms underlying the occurrence and development of AD, which runs through the entire treatment process. The pathogenesis of AD is closely related to the inflammasome signaling pathway of nucleotide binding oligomerization domain-like receptor protein 3 (NLRP3). Activating the NLRP3 signaling pathway increases neuroinflammatory response, intervenes in microglial polarization, and regulates Aβ sedimentation, cellular autophagy, brain homeostasis, etc. This article takes the NLRP3 signaling pathway as the starting point to sort out and summarize the upstream and downstream targets under the AD mechanism in the past five years, as well as the research on the NLRP3 signal pathway targets with the participation of the relevant traditional Chinese medicine compounds, such as Danggui Shaoyaosan, modified Shuyu Wan, Qingxin Kaiqiao prescription, Kaixin San, Jiedu Yizhi prescription, and modified Buwang San, traditional Chinese medicine monomer extracts, such as silibinin, Lycium barbarum polysaccharides, liquiritigenin, salidroside, baicalin, cinnamaldehyde, betaine, acacetin, and Hericium erinaceus, and acupuncture and moxibustion. It also reviews the latest achievements in the prevention and treatment of AD. This study provides ideas and directions for in-depth research on the prevention and treatment of cognitive dysfunction related diseases with traditional Chinese medicine.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 121-130, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1011450

RESUMO

ObjectiveTo investigate the therapeutic effect of Scutellariae Radix-Coptidis Rhizoma (SRCR) on atherosclerosis (AS) in mice and the effect of SRCR on macrophage pyroptosis in plaques via NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasomes. MethodApoE-/- mice were fed with a high-fat diet for the modeling of AS and randomized into model, atorvastatin (5 mg·kg-1), and low-, medium-, and high-dose (1.95, 3.9, 7.8 g·kg-1, respectively) SRCR groups. Normal C57BL/6J mice were selected as the control group. After 8 weeks of administration, hematoxylin-eosin staining was used to observe the pathological status of the aortic plaque. The lipid accumulation in aortic plaque was observed by oil red O staining. The serum levels of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) in mice were measured. Immunofluorescence double staining was employed to detect the co-localized expression of EGF-like module-containing mucin-like hormone receptor-like 1 (EMR1)/NLRP3 and EMR1/gasdermin D (GSDMD). The serum levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18) were determined by enzyme-linked immunosorbent assay (ELISA). The protein levels of NLRP3, apoptosis-associated speck-like protein (ASC), Caspase-1, cleaved Caspase-1, GSDMD, N-terminus of GSDMD (GSDMD-NT), pro-IL-1β, IL-1β, and IL-18 were determined by Western blot, and the mRNA levels of NLRP3, ASC, Caspase-1, GSDMD, IL-1β, and IL-18 were determined by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultCompared with the control group, the model group showed obvious plaques, elevated serum levels of TG, TC, LDL-C, IL-1β, and IL-18 (P<0.01), lowered serum level of HDL-C (P<0.01), and up-regulated expression of NLRP3 inflammasomes and molecules related to pyroptosis in the aortic plaques (P<0.01). Compared with the model group, SRCR, especially at the medium and high doses, alleviated the plaque pathology, reduced the lipid content in plaques (P<0.05, P<0.01), recovered the serum lipid levels (P<0.05), reduced the macrophage recruitment (P<0.01), activation of NLRP3 inflammasomes, and pyroptosis in aortic root plaques (P<0.05), lowered the serum IL-1β and IL-18 levels (P<0.01), and down-regulated the protein levels of NLRP3, ASC, Caspase-1, cleaved Caspase-1, GSDMD, GSDMD-NT, pro-IL-1β, IL-1β, and IL-18 (P<0.05) and the mRNA levels of NLRP3, ASC, Caspase-1, GSDMD, IL-1β, and IL-18 in the aortic tissue (P<0.05). ConclusionSRCR exerts a therapeutic effect on high-fat diet-induced AS in mice by inhibiting the activation NLRP3 inflammasomes and reducing the pyroptosis of macrophages in plaques.

14.
Bol. méd. Hosp. Infant. Méx ; 80(3): 211-216, May.-Jun. 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1513755

RESUMO

Abstract Background: Metabolic disorders such as obesity and type 2 diabetes (T2D) coincide with an increased expression of pro-inflammatory factors. The NLRP3 inflammasome is a complex that activates the pro-inflammatory cytokine IL-1β. (NOD-like receptor protein 3). Some nutrients, such as fatty acids, influence inflammatory processes. For example, in clinical studies, higher trans-palmitoyl acid (TP) concentrations coincide with lower adiposity and lower risk of developing T2D. This study aims to evaluate the effect of TP on NLRP3 expression in a rodent model of diet-induced obesity (DIO). Methods: C57BL/6J mice were fed ad libitum with a control or a high-fat diet (HFD), added with or without TP (3 g/kg diet), for 11 weeks. IL-1β was quantified in serum, and NLRP3-related gene expression was explored in epididymal adipose tissue. Results: Despite increased weight gain in both high-fat groups, the high-fat TP group gained less weight than the high-fat group. In addition, NLRP3 and caspase-1 expression was higher in the HFD groups, but no differences were observed between the HFD and the HFD TP groups. Serum IL-1β levels were not different among groups. Conclusions: Diet supplementation with TP prevents weight gain and has a neutral influence over NLRP3 expression and IL-1β concentration in a DIO mice model.


Resumen Introducción: Las alteraciones metabólicas como la obesidad y diabetes tipo 2 (DT2) coinciden con la expresión aumentada de factores proinflamatorios. Un complejo que induce la activación de la citocina proinflamatoria IL-1β es el inflamasoma NLRP3 (NOD-like receptor protein 3). Algunos nutrimentos, como los ácidos grasos, influencian los procesos inflamatorios. Por ejemplo, en estudios clínicos, mayores concentraciones del ácido trans-palmitoléico (TP) coinciden con una menor adiposidad y un menor riesgo de desarrollar DT2. El objetivo de este estudio fue evaluar el efecto del TP sobre la expresión del inflamasoma NLRP3 en un modelo de obesidad inducida por dieta (OID) en roedores. Métodos: Se alimentaron ratones C57BL/6J ad libitum con una dieta control o alta en lípidos (AL), adicionada o no con TP (3 g/kg dieta), durante 11 semanas. Se cuantificó la concentración de IL-1β en elsuero de los animales, y en el tejido adiposo epididimal se midió la expresión de los componentes del inflamasoma. Resultados: A pesar del aumento de peso en ambos grupos de dieta con alto contenido en lípidos, el grupo alto en lípidos TP ganó menos peso que el grupo AL. Por otro lado, la expresión de genes del inflamasoma resultó mayor en los grupos AL, pero no se encontraron diferencias entre los grupos AL y AL TP. Además, no se observaron diferencias en la concentración de IL-1β en suero entre grupos. Conclusiones: La dieta suplementada con TP previno el aumento del peso corporal, pero no modificó la expresión de los componentes del inflamasoma ni la concentración de IL-1β en suero.

15.
Gac. méd. Méx ; 159(3): 261-267, may.-jun. 2023. graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1448285

RESUMO

Resumen La cardiomiopatía diabética es una complicación grave de la diabetes causada por estrés oxidativo, inflamación, resistencia a la insulina, fibrosis miocárdica y lipotoxicidad. Se trata de un padecimiento insidioso, complejo y difícil de tratar. El inflamasoma NLRP3 desencadena la maduración y liberación de citoquinas proinflamatorias, participa en procesos fisiopatológicos como la resistencia a la insulina y la fibrosis miocárdica, además de estar estrechamente relacionado con la aparición y progresión de la cardiomiopatía diabética. El desarrollo de inhibidores dirigidos a aspectos específicos de la inflamación sugiere que el inflamasoma NLRP3 puede utilizarse para tratar la cardiomiopatía diabética. Este artículo pretende resumir el mecanismo y las dianas terapéuticas del inflamasoma NLRP3 en la cardiomiopatía diabética, así como aportar nuevas sugerencias para el tratamiento de esta enfermedad.


Abstract Diabetic cardiomyopathy (DCM) is a serious complication of diabetes caused by oxidative stress, inflammation, insulin resistance, myocardial fibrosis, and lipotoxicity; its nature is insidious, complex and difficult to treat. NLRP3 inflammasome triggers the maturation and release of pro-inflammatory cytokines, participates in pathophysiological processes such as insulin resistance and myocardial fibrosis, in addition to being closely related to the development and progression of diabetic cardiomyopathy. The development of inhibitors targeting specific aspects of inflammation suggests that NLRP3 inflammasome can be used to treat diabetic cardiomyopathy. This paper aims to summarize NLRP3 inflammasome mechanism and therapeutic targets in diabetic cardiomyopathy, and to provide new suggestions for the treatment of this disease.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 274-282, 2023.
Artigo em Chinês | WPRIM | ID: wpr-965673

RESUMO

Ulcerative colitis (UC) mainly occurs in the colon and rectum, with complex pathological mechanism. The occurrence of ulcerative colitis is associated with the uncontrollable inflammatory response of the intestine. The Western medicine therapy of UC mainly uses glucocorticoids and immunosuppressants to reduce intestinal inflammation. While blocking the progress of UC to a certain extent, it causes severe adverse reactions. More and more studies have confirmed that traditional Chinese medicine (TCM) has obvious advantages in the prevention and treatment of UC and can significantly reduce the recurrence of the disease. Pyroptosis, a novel form of cell death, can destroy cell structure, release intracellular pro-inflammatory substances, and mediate intestinal immune response in UC. TCM can promote pyroptosis (removing excess) or inhibit pyroptosis (replenishing deficiency), which is consistent with the regulation of Yin and Yang. TCM plays a role in the treatment of UC mainly by inhibiting pyroptosis (replenishing deficiency) and reducing intestinal immune response. In recent years, a large number of studies have been carried out to decipher the mechanism of TCM in the treatment of UC via NOD-like receptor protein domain 3 (NLRP3)-mediated pyroptosis pathway. The results have demonstrated that NLRP3 pathway is the key target of TCM in the treatment of UC. However, a comprehensive summary remains to be carried out on the inhibition of NLRP3-mediated pyroptosis pathway by TCM in the treatment of UC. Therefore, we retrieved the articles in this field in recent years with the keywords "pyroptosis", "NLRP3", "ulcerative colitis", and "Chinese medicine". The Chinese medicines regulating NLRP3 pathway mainly have the functions of clearing heat and drying dampness, harmonizing Qi and blood, moving Qi and dredging fu-organs, and invigorating spleen and removing dampness. The findings can help researchers to fully understand the mechanism of TCM in the treatment of UC via the NLRP3 pathway and provide a theoretical basis for the treatment of UC and further drug development.

17.
Chinese Journal of Schistosomiasis Control ; (6): 29-37, 2023.
Artigo em Chinês | WPRIM | ID: wpr-965525

RESUMO

Objective To investigate the effect of Trichomonas vaginalis macrophage migration inhibitory factor (TvMIF) on THP-1 macrophages.. Methods Recombinant TvMIF protein was prokaryotic expressed and purified, and endotoxin was removed after identification. Following exposure to TvMIF at concentrations of 0, 1, 5, 10, 50 and 100 ng/mL, the cytotoxicity of the recombinant TvMIF protein to THP-1 macrophages was tested using cell counting kit (CCK)-8 assay, and the apoptosis of THP-1 macrophages and reactive oxygen species (ROS) were detected using flow cytometry. The relative expression of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), caspase-1, interleukin-1β (IL-1β) and IL-18 genes was quantified using real-time fluorescent quantitative PCR (qPCR) assay, and the expression of caspase-1, NLRP3, gasdermin D (GSDMD), gasdermin D N-terminal (GSDMD-NT) and pro-IL-1β proteins were determined using Western blotting assay. Results Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) displayed successful expression and purification of the recombinant TvMIF protein with a molecular weight of 15.5 kDa, and the endotoxin activity assay showed the successful removal of endotoxin in the recombinant TvMIF protein (endotoxin concentration < 0.1 EU/mL), which was feasible for the subsequent studies on protein functions. Flow cytometry revealed that the recombinant TvMIF protein at a concentration of 10 ng/mL and less promoted the apoptosis of THP-1 macrophages, and the highest apoptotic rate of THP-1 macrophages was seen following exposure to the recombinant TvMIF protein at a concentration of 5 ng/mL, while the recombinant TvMIF protein at concentrations of 50 and100 ng/mL inhibited the apoptosis of THP-1 macrophages. Exposure to the recombinant TvMIF protein at a concentration 1 ng/mL resulted in increased ROS levels in THP-1 macrophages. qPCR assay quantified significantly elevated caspase-1, NLRP3, IL-18 and IL-1β expression in THP-1 macrophages 8 hours post-treatment with the recombinant TvMIF protein at a concentration 1 ng/mL, and Western blotting determined increased caspase-1, NLRP3, pro-IL-1β, GSDMD and GSDMD-NT protein expression in THP-1 macrophages following exposure to the recombinant TvMIF protein at a concentration 1 ng/mL. Pretreatment with MCC950 significantly reduced GSDMD and GSDMD-NT protein expression. Conclusions High-concentration recombinant TvMIF protein inhibits macrophage apoptosis, while low-concentration recombinant TvMIF protein activates NLRP3 inflammasome and promotes macrophage pyroptosis.

18.
Journal of Preventive Medicine ; (12): 180-184, 2023.
Artigo em Chinês | WPRIM | ID: wpr-962286

RESUMO

Objective@#To examine the effect of SiO2 exposure on the airway surface microenvironment and NIMA-related kinase 7 (NEK7)/nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome in rats.@*Methods@#Twenty-four specific pathogen-free male rats of the SD strain were randomly divided into the control group and the model group, of 12 rats in each group. Rats in the model group were given SiO2 suspensions through disposable tracheal intubation perfusion to model silicosis in rats, while rats in the control group was perfused with the same amount of physiological saline. The pH value and glucose level were measured in the rat bronchoalveolar lavage fluid (BALF) 14 and 28 days after modeling. Lung tissues were stained with HE and Masson and the distribution of inflammatory cells and the deposition of pulmonary interstitial collagens were observed in lung tissues under a light microscope. The expression of transforming growth factor β1 (TGF-β1), collagen type Ⅰ(ColⅠ), collagen type Ⅲ (Col Ⅲ), interleukin-1β (IL-1β), NLRP3, N-terminal domain of Gasdermin D (GSDMD-NT), caspase-1, and NEK7 was quantified in lung specimens using immunohistochemistry.@*Results@# Lower pH values were measured in rat BALF in the model group than in the control group 14 [(6.38±0.05) vs. (6.68±0.08), P<0.05] and 28 days after modeling [(6.63±0.14) vs. (6.86±0.05), P<0.05], while higher glucose levels were seen in the model group than in the control group 14 [(0.39±0.06) vs. (0.31±0.04) mg/dL, P<0.05] and 28 days after modeling [(0.39±0.08) vs. (0.31±0.06) mg/dL, P<0.05]. HE and Masson staining showed mild to moderate alveolitis and pulmonary fibrosis in rats 14 days post-exposure to SiO2, and showed moderate to severe alveolitis and pulmonary fibrosis 28 days post-exposure. Immunohistochemistry detected higher TGF-β1, ColⅠ, Col Ⅲ, IL-1β, NLRP3, GSDMD-NT, caspase-1 and NEK7 expression in rat lung tissues in the model group than in the control group (all P<0.05). @*Conclusions@#SiO2 exposure may cause changes in rat airway surface microenvironment, including BALF acidification and elevated glucose. Pyroptosis induced by activation of NEK7-associated NLRP3 inflammasome may be an important mechanism of pulmonary fibrosis caused by silicosis.

19.
Journal of Experimental Hematology ; (6): 1706-1713, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1010026

RESUMO

OBJECTIVE@#To investigate the effect of Baicalin on the proliferation and pyroptosis of diffuse large B-cell lymphoma cell line DB and its mechanism.@*METHODS@#DB cells were treated with baicalin at different concentrations (0, 5, 10, 20, 40 μmol/L). Cell proliferation was detected by CCK-8 assay and half maximal inhibitory concentration (IC50) was calculated. The morphology of pyroptosis was observed under an inverted microscope, the integrity of the cell membrane was verified by LDH content release assay, and the expressions of pyroptosis-related mRNA and protein (NLRP3, GSDMD, GSDME, N-GSDMD, N-GSDME) were detected by real-time fluorescence quantitative PCR and Western blot. In order to further clarify the relationship between baicalin-induced pyroptosis and ROS production in DB cells, DB cells were divided into control group, baicalin group, NAC group and NAC combined with baicalin group. DB cells in the NAC group were pretreated with ROS inhibitor N-acetylcysteine (NAC) 2 mmol/L for 2 h. Baicalin was added to the combined treatment group after pretreatment, and the content of reactive oxygen species (ROS) in the cells was detected by DCFH-DA method after 48 hours of culture.@*RESULTS@#Baicalin inhibited the proliferation of DB cells in a dose-dependent manner (r=-0.99), and the IC50 was 20.56 μmol/L at 48 h. The morphological changes of pyroptosis in DB cells were observed under inverted microscope. Compared with the control group, the release of LDH in the baicalin group was significantly increased (P<0.01), indicating the loss of cell membrane integrity. Baicalin dose-dependently increased the expression levels of NLRP3, N-GSDMD, and N-GSDME mRNA and protein in the pyroptosis pathway (P<0.05). Compared with the control group, the level of ROS in the baicalin group was significantly increased (P<0.05), and the content of ROS in the NAC group was significantly decreased (P<0.05). Compared with the NAC group, the content of ROS in the NAC + baicalin group was increased. Baicalin significantly attenuated the inhibitory effect of NAC on ROS production (P<0.05). Similarly, Western blot results showed that compared with the control group, the expression levels of pyroptosis-related proteins was increased in the baicalin group (P<0.05). NAC inhibited the expression of NLRP3 and reduced the cleavage of N-GSDMD and N-GSDME (P<0.05). Compared with the NAC group, the NAC + baicalin group had significantly increased expression of pyroptosis-related proteins. These results indicate that baicalin can effectively induce pyroptosis in DB cells and reverse the inhibitory effect of NAC on ROS production.@*CONCLUSION@#Baicalin can inhibit the proliferation of DLBCL cell line DB, and its mechanism may be through regulating ROS production to affect the pyroptosis pathway.


Assuntos
Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Piroptose , Linhagem Celular , RNA Mensageiro , Linfoma Difuso de Grandes Células B
20.
China Journal of Chinese Materia Medica ; (24): 6702-6710, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008868

RESUMO

This study aims to explore the influence of Polygonati Rhizoma on the pyroptosis in the rat model of diabetic macroangiopathy via the NOD-like receptor thermal protein domain associated protein 3(NLRP3)/cysteinyl aspartate specific proteinase-1(caspase-1)/gasdermin D(GSDMD) pathway. The rat model of diabetes was established by intraperitoneal injection of streptozotocin(STZ) combined with a high-fat, high-sugar diet. The blood glucose meter, fully automated biochemical analyzer, hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay, immunofluorescence, immunohistochemistry, and Western blot were employed to measure blood glucose levels, lipid levels, vascular thickness, inflammatory cytokine levels, and expression levels of pyroptosis-related proteins. The mechanism of pharmacological interventions against the injury in the context of diabetes was thus explored. The results demonstrated the successful establishment of the model of diabetes. Compared with the control group, the model group showed elevated levels of fasting blood glucose, total cholesterol(TC), triglycerides(TG) and low-density lipoprotein cholesterol(LDL-c), lowered level of high-density lipoprotein cholesterol(HDL-c), thickened vascular intima, and elevated serum and aorta levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β) and interleukin-18(IL-18). Moreover, the model group showed increased NLRP3 inflammasomes and up-regulated levels of caspase-1 and GSDMD in aortic vascular cells. Polygonati Rhizoma intervention reduced blood glucose and lipid levels, inhibited vascular thickening, lowered the levels of TNF-α, IL-1β, IL-18 in the serum and aorta, attenuated NLRP3 inflammasome expression, and down-regulated the expression levels of caspase-1 and GSDMD, compared with the model group. In summary, Polygonati Rhizoma can slow down the progression of diabetic macroangiopathy by inhibiting pyroptosis and alleviating local vascular inflammation.


Assuntos
Animais , Ratos , Caspase 1/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Interleucina-18 , Glicemia , Piroptose , Fator de Necrose Tumoral alfa , Complicações do Diabetes , Doenças Vasculares , Inflamassomos , Colesterol , Lipídeos , Diabetes Mellitus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA