Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
China Journal of Chinese Materia Medica ; (24): 4834-4842, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008653

RESUMO

This study aims to investigate the effect and mechanism of total triterpenes of Euphorbium in treating rheumatoid arthritis(RA). The rat model of RA was established with Freund's complete adjuvant(FCA). Male rats were randomly assigned into control, model, Tripterygium glycosides(7.5 mg·kg~(-1)), and low-, medium-, and high-dose total triterpenes of Euphorbium(32, 64, and 128 mg·kg~(-1), respectively) groups, with 10 rats in each group. In other groups except the control group, 0.2 mL FCA was injected into the right hind toe. Rats in the intervention groups were administrated with corresponding drugs by gavage, and the control group and the model group with the same volume of 0.5% CMC-Na solution once a day. During the treatment period, the swelling degree of the hind paw was measured and the arthritis was scored until day 30. At the end of drug administration, the pathological changes of the joint tissue were observed by hematoxylin-eosin staining. The content of malondialdehyde(MDA), glutathione(GSH), and Fe~(2+) and the activity of superoxide dismutase(SOD) in the joint tissue were measured by biochemical colorimetry. RT-PCR was performed to determine the mRNA levels of nuclear factor erythroid 2-related factor 2(Nrf2), glutathione peroxidase 4(GPX4), and acyl-CoA synthetase long chain family member 4(ACSL4) in the joint tissue. Western blot was employed to determine the protein levels of Nrf2, Kelch-like ECH-associated protein 1(Keap1), heme oxygenase-1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), SOD2, GPX4, and ACSL4 in the joint tissue. The results showed that the treatment with Tripterygium glycosides(7.5 mg·kg~(-1)) and total triterpenes of Euphorbium(32, 64, and 128 mg·kg~(-1)) alleviated the swelling degree of bilateral hind limbs, decreased the arthritis score, reduced joint tissue lesions and the content of MDA and Fe~(2+) in the joint tissue, and increased GSH content and SOD activity. Furthermore, the interventions up-regulated the protein and mRNA levels of Nrf2 and GPX4, down-regulated the protein and mRNA levels of ACSL4, and up-regulated the protein levels of Keap1, NQO1, HO-1, and SOD2 in the Nrf2/HO-1/GPX4. In summary, the total triterpenes of Euphorbium can treat RA by inhibiting lipid peroxidation and abnormal ferroptosis, which may involve the Nrf2/HO-1/GPX4 signaling pathway.


Assuntos
Ratos , Masculino , Animais , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Triterpenos/farmacologia , Estresse Oxidativo , Artrite Reumatoide/genética , Glutationa , Superóxido Dismutase/metabolismo , Glicosídeos/farmacologia , RNA Mensageiro/metabolismo
2.
China Pharmacy ; (12): 2734-2739, 2023.
Artigo em Chinês | WPRIM | ID: wpr-998557

RESUMO

OBJECTIVE To explore the effects and potential mechanism of veratramine (VTM) on the proliferation of human glioblastoma U251 cells. METHODS The network pharmacology methods were adopted to screen the targets of ferroptosis related to the effects of VTM on glioblastoma, and to conduct gene ontology and Kyoto Encyclopedia of Genes and Genosomes enrichment analysis. Using U251 cells as the object, CCK-8 assay, the observation of cell morphological changes, DCFH-DA fluorescence probe method, FerroOrange fluorescence probe method and Western blot assay were used to validate the inhibitory effects of VTM on U251 cell proliferation and its possible mechanism. RESULTS Totally 462 targets of ferroptosis related to the effects of VTM on glioblastoma were screened out; they mainly enriched in biological processes such as oxidative stress and apoptosis, and cellular components such as cytoplasmic vesicles and mitochondrial membranes; they affected molecular functions such as iron ion (Fe2+) binding and DNA transcription processes, as well as iron death and phosphoinositide 3-kinase/protein kinase B signaling pathways. VTM with 40, 60, 80, 100, 120 and 140 μmol/L could significantly reduce the cell survival rate (P< 0.01); VTM with 40, 80 and 120 μmol/L could cause cell atrophy and nuclear fragmentation, significantly inhibit the clone formation, increase the levels of intracellular reactive oxygen species (ROS) and Fe2+ levels, increase the expressions of nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) protein to different extents, while down-regulate the expression of glutathione peroxidase 4 (GPX4) protein (P<0.05 or P<0.01). CONCLUSIONS VTM can inhibit the proliferation of U251 cells, and promote the accumulation of intracellular ROS and Fe2+, thus inducing ferroptosis; its mechanism might be related to the regulation of the Nrf2/HO-1/GPX4 signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA