Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biochemistry and Molecular Biology ; (12): 1284-1290, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1015640

RESUMO

O-linked-N-acetylglucosamine (O-GlcNAc) modification is a unique post-translational modification that plays a regulatory role in many cellular processes, such as transcription, intracellular signaling, endocytosis, and protein stability. Epidermal growth factor (EGF) domain-specific O-GlcNAc transferase (EOGT) is an endoplasmic reticulum (ER) resident protein which can glycosylate the residues of Ser or Thr of secreted or membrane (transmembrane) glycoproteins containing EGF domain. Notch signaling pathway is involved in cell-to-cell communication which regulates cell biological processes through interactions between adjacent cells. To date, EOGT-mediated O-GlcNAc modification has been found to be involved in many human diseases, and shown significant relation with Notch signaling pathway. However, the specific molecular mechanisms have not been fully elucidated. In this review, we briefly introduce recent studies regarding to the roles of EOGT-mediated O-GlcNAc modification and its correlation with Notch signaling pathway in human diseases.

2.
Chinese Journal of Biochemistry and Molecular Biology ; (12): 1062-1068, 2021.
Artigo em Chinês | WPRIM | ID: wpr-1015892

RESUMO

Caveolin-1 (Cav-1), a major structural protein of caveolae, is implicated in the vesicular uptake processes of transcytosis and cell signaling. However, its role in modulating protein glycosylation and tumor metastasis remains to be further elucidated. In the present study, it was shown that Cav-1 promotes the expression of O-GlcNAcylation and O-GlcNAc transferase (OGT), and triggers the invasion and metastasis of hepatocellular carcinoma (HCC) cells. The results of RT-qPCR, Western blot and dual lucif-erase reporter assay showed that Cav-1 negatively regulated the expression of transcription factor RUNX2 in HCC. Subsequently, this results in attenuate RUNX2-induced transcription of miR24. miR24 suppresses mouse HCC cells invasion and metastasis via directly targeting Ogt mRNA 3′UTR. This research provides evidence of Cav-1-mediated OGT expression and O-GlcNAc (O-linked N-acetylglucosamine) elevation. These data give insight into a novel mechanism of HCC occurrence and development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA