Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Acta Pharmaceutica Sinica B ; (6): 3876-3891, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1011149

RESUMO

Protein corona (PC) has been identified to impede the transportation of intravenously injected nanoparticles (NPs) from blood circulation to their targeted sites. However, how intestinal PC (IPC) affects the delivery of orally administered NPs are still needed to be elucidated. Here, we found that IPC exerted "positive effect" or "negative effect" depending on different pathological conditions in the gastrointestinal tract. We prepared polystyrene nanoparticles (PS) adsorbed with different IPC derived from the intestinal tract of healthy, diabetic, and colitis rats (H-IPC@PS, D-IPC@PS, C-IPC@PS). Proteomics analysis revealed that, compared with healthy IPC, the two disease-specific IPC consisted of a higher proportion of proteins that were closely correlated with transepithelial transport across the intestine. Consequently, both D-IPC@PS and C-IPC@PS mainly exploited the recycling endosome and ER-Golgi mediated secretory routes for intracellular trafficking, which increased the transcytosis from the epithelium. Together, disease-specific IPC endowed NPs with higher intestinal absorption. D-IPC@PS posed "positive effect" on intestinal absorption into blood circulation for diabetic therapy. Conversely, C-IPC@PS had "negative effect" on colitis treatment because of unfavorable absorption in the intestine before arriving colon. These results imply that different or even opposite strategies to modulate the disease-specific IPC need to be adopted for oral nanomedicine in the treatment of variable diseases.

2.
Acta Pharmaceutica Sinica B ; (6): 3425-3443, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1011133

RESUMO

The extremely low bioavailability of oral paclitaxel (PTX) mainly due to the complicated gastrointestinal environment, the obstruction of intestinal mucus layer and epithelium barrier. Thus, it is of great significance to construct a coordinative delivery system which can overcome multiple intestinal physicochemical obstacles simultaneously. In this work, a high-density PEGylation-based glycocholic acid-decorated micelles (PTX@GNPs) was constructed by a novel polymer, 9-Fluorenylmethoxycarbonyl-polyethylene glycocholic acid (Fmoc-PEG-GCA). The Fmoc motif in this polymer could encapsulate PTX via π‒π stacking to form the core of micelles, and the low molecular weight and non-long hydrophobic chain of Fmoc ensures the high-density of PEG. Based on this versatile and flexible carriers, PTX@GNPs possess mucus trapping escape ability due to the flexible PEG, and excellent intestine epithelium targeting attributed to the high affinity of GCA with apical sodium-dependent bile acid transporter. The in vitro and in vivo results showed that this oral micelle could enhance oral bioavailability of PTX, and exhibited similar antitumor efficacy to Taxol injection via intravenous route. In addition, oral PTX@GNPs administered with lower dosage within shorter interval could increase in vivo retention time of PTX, which supposed to remodel immune microenvironment and enhance oral chemotherapy efficacy by synergistic effect.

3.
China Journal of Chinese Materia Medica ; (24): 95-102, 2022.
Artigo em Chinês | WPRIM | ID: wpr-927915

RESUMO

In this experiment, Panax notoginseng saponins chitosan nanoparticles(PNS-NPs) were prepared by self-assembly and their appearance, particle size, encapsulation efficiency, drug loading, polydispersity index(PDI), Zeta potential, and microstructure were characterized. The prepared PNS-NPs were intact in structure, with an average particle size of(209±0.258) nm, encapsulation efficiency of 42.34%±0.28%, a drug loading of 37.63%±0.85%, and a Zeta potential of(39.8±3.122) mV. The intestinal absorption of PNS-NPs in rats was further studied. The established HPLC method of PNS was employed to investigate the effects of pH, perfusion rate, and different drugs(PNS raw materials, Xuesaitong Capsules, and PNS-NPs). The absorption rate constant(K_a) and apparent permeability coefficient(P_(app)) in the duodenum, jejunum, ileum, and colon were calculated and analyzed. As illustrated by the results, the intestinal absorption of PNS-NPs was increased in the perfusion solution at pH 6.8(P<0.05), and perfusion rate had no significant effect on the K_a and P_(app) of PNS-NPs. The intestinal absorption of PNS-NPs was significantly different from that of PNS raw materials and Xuesaitong Capsules(P<0.05), and the intestinal absorption of PNS-NPs was significantly improved.


Assuntos
Animais , Ratos , Quitosana/farmacologia , Absorção Intestinal , Nanopartículas , Panax notoginseng/química , Saponinas/farmacologia
4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 215-223, 2021.
Artigo em Chinês | WPRIM | ID: wpr-906474

RESUMO

Oral nanoparticles (NPs) has gradually become a approach to improve oral bioavailability of biopharmaceutics classification system (BCS) Ⅱ, Ⅲ, Ⅳ drugs, and the transmembrane transport mechanism in the gastrointestinal tract largely depends on physicochemical characteristics of NPs. It would be beneficial to design the NPs with high transport efficiency and effectively improve the oral bioavailability of drugs by adopting a reasonable research model to analyze the transmembrane mechanism of the oral NPs and exactly reveal the relationship between the physicochemical properties and the transport mechanism of NPs. This review focused on summarizing the transmembrane approaches of oral NPs, comparing the advantages and disadvantages of the common cell models, concluding the potential interaction between the physicochemical properties and transmembrane process of NPs, and proposing the research strategy of transport mechanism based on in situ intestinal perfusion, with the purpose of discovering a suitable research model for studying the transport mechanism of different NPs, providing a basis for regulating the transport performance of the NPs to improve the oral bioavailability, and expanding the application of oral NPs in the development of new drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA