Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Artigo em Chinês | WPRIM | ID: wpr-962639

RESUMO

ObjectiveTo compare the effects of different processing methods in ancient and modern times on the chemical components of Lilii Bulbus decoction, and to provide experimental support for the origin processing, decoction piece processing and clinical application of this herb. MethodUltra high performance liquid chromatography tandem quadrupole electrostatic field orbitrap high resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) was used for structural identification of the compounds using excimer ions, secondary MS and characteristic fragment ions, and referring to relevant literature and database information. Principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) were used to screen the main differential components, the differential components were quantitatively studied by high performance liquid chromatography(HPLC), in order to compare the types and contents of chemical components in the decoction of different processing products of Lilii Bulbus. ResultA total of 24 chemical components were identified from the decoction of different processed products of Lilii Bulbus, water extract and scalding liquid of fresh Lilii Bulbus, including 17 phenols, 5 saponins and 2 alkaloids. Compared with the fresh Lilii Bulbus decoction, the contents of regaloside A, p-coumaric acid, colchicine and other components in the decoction of dry Lilii Bulbus processed by scalding method decreased, the content of regaloside C in the decoction of dry Lilii Bulbus processed by steaming method decreased, and the contents of regaloside A and regaloside C in the decoction of fresh Lilii Bulbus processed by water immersion also decreased. Compared with the decoction of dry Lilii Bulbus processed by scalding method, the overall content of components in the fresh Lilii Bulbus decoction and the decoction of fresh Lilii Bulbus processed by water immersion was higher, the contents of components in the decoction of dry Lilii Bulbus processed by steaming method was higher, except for the slightly lower content of regaloside C. ConclusionDifferent processing processes have a certain effect on the types and contents of chemical components in Lilii Bulbus decoction. Scalding process is beneficial to the preservation of Lilii Bulbus, but can cause the loss of effective components. Compared with scalding method, steaming method can prevent browning of Lilii Bulbus and reduce the loss of its active ingredients. The processing method of removing foam after overnight immersion proposed by ZHANG Zhongjing may be more conducive to the treatment of Baihe disease, which can provide reference for the clinical rational application and mechanism research of different processed products of Lilii Bulbus.

2.
Artigo em Chinês | WPRIM | ID: wpr-988188

RESUMO

ObjectiveUltra-high performance liquid chromatography-quadrupole-electrostatic field orbitrap high resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) was used to identify the metabolites of limonin in rats, and to explore the gender differences in the distribution of prototype components and metabolites in rats after single dose intragastric administration of limonin, as well as to speculate the metabolic pathways. MethodThe separation was performed on a Thermo Scientific Accucore™ C18 column(3 mm×100 mm, 2.6 μm) with 0.1% formic acid aqueous solution(A)-0.1% formic acid acetonitrile solution(B) as mobile phase in a gradient elution mode(0-1 min, 5%B; 1-6 min, 5%-20%B; 6-18 min, 20%-50%B; 18-23 min, 50%-80%B; 23-25 min, 80%-95%B; 25-30 min, 95%B) at a flow rate of 0.3 mL·min-1 and a column temperature of 30 ℃. MS data of biological samples were collected under the positive ion mode of electrospray ionization(ESI) and in the scanning range of m/z 100-1 500. Plasma, tissues(heart, liver, spleen, lung, kidney, stomach and small intestine), urine and fecal samples were collected and prepared after intragastric administration, and the prototype component and metabolites of limonin were identified. ResultThe prototype component of limonin were detected in the feces, stomach, small intestine of female and male rats, and in the heart, liver, spleen, lung and kidney tissues of female rats. A total of 23 metabolites related to limonin were detected in rats, of which 2, 1, 5, 4, 23 metabolites were detected in liver, stomach, small intestine, urine and feces, respectively, and the main metabolic pathways were hydrolysis, reduction, hydroxylation and methylation, etc. The distribution of some metabolites differed between male and female rats. ConclusionThe prototype component of limonin are mainly distributed in the stomach and small intestine in rats, and the distribution of prototype component and some metabolites are different by gender. Limonin is mainly excreted through feces with phase Ⅰ metabolites as the main ones. The results of this study can provide a reference for further elucidation of the effect of gender differences on the metabolism of limonin in vivo and its mechanism of action.

3.
China Pharmacy ; (12): 796-801, 2023.
Artigo em Chinês | WPRIM | ID: wpr-969574

RESUMO

OBJECTIVE To identify the chemical components of Changtong oral liquid (CTOL),and to provide reference for the basic research and secondary development of its pharmacological substances. METHODS UHPLC-Orbitrap HRMS technique was adopted. CTOL sample was separated on a Hypersil Gold column with mobile phase consisted of 0.1% formic acid (containing 5 mmol/L ammonium formate)-acetonitrile (gradient elution). The eluent was detected in positive and negative ion modes using an electrospray ionization source. The data was processed by Xcalibur 4.3 and Compound Discoverer 3.3 software. The primary and secondary mass spectra data of each compound were collected. The unknown compounds were identified according to the mass spectrometry library of the instrument and the network databases mzCloud,mzVault,etc. Through matching with the pharmacology database and analysis platform of the traditional Chinese medicine system,the chemical components could be attributed to the traditional Chinese medicine. RESULTS Fifty-three chemical components were identified and analyzed from CTOL,such as 24 flavonoids,8 quinones,5 phenylpropanoids,4 sugars and glycosides,5 organic acids,3 amino acids,1 alkaloid,1 phenolic and 2 other compounds. Among them,12 components were derived from Salvia miltiorrhiza,9 from Citrus aurantium,7 from Rheum palmatum,4 from Angelica sinensis,1 from Magnolia officinalis,16 from Glycyrrhiza uralensis,and 4 from many kinds of medicinal materials. CONCLUSIONS CTOL mainly contains flavonoids,quinones and phenylpropanoid compounds,and its chemical components mainly come from G. uralensis,S. miltiorrhiza and C. aurantium.

4.
Zhongguo Zhong Yao Za Zhi ; (24): 3516-3534, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981484

RESUMO

Ultra-high performance liquid chromatography-quadrupole-Exactive Orbitrap high resolution mass spectrometry(UHPLC-Q-Exactive Orbitrap HRMS) was employed to systematically analyze the chemical constituents in Lysionoti Herba, and high perfor-mance liquid chromatography-ultraviolet(HPLC-UV) to determine the content of main compounds. A Synergi~(TM) Hydro-RP 100 Å colu-mn(2 mm×100 mm, 2.5 μm) was used for gradient elution with acetonitrile-0.1% aqueous formic acid as the mobile phase at a flow rate of 0.2 mL·min~(-1) and a column temperature of 40 ℃. MS and MS/MS were conducted with electrospray ionization(ESI) in both positive and negative modes. The chemical components in Lysionoti Herba were identified by comparison with the retention time and mass spectra of reference compounds and the relevant mass spectral data reported in MS databases and relevant literature. Furthermore, the content of five constituents(neochlorogenic acid, chlorogenic acid, forsythoside B, acteoside, and nevadensin) in different Lysiono-ti Herba samples was simultaneously determined by HPLC-UV at the wavelength of 330 nm. A total of 84 compounds were identified in Lysionoti Herba, including 27 flavonoids, 20 phenylethanoid glycosides, 5 amino acids, 18 organic acids, 1 alkaloid, 6 nucleosides, and 7 others. The content of neochlorogenic acid, chlorogenic acid, forsythoside B, acteoside, and nevadensin showed good linear relationship(r>0.999) with the peak area within certain concentration ranges, which were 3.22-102.90, 12.84-410.82, 31.63-1 012.01, 25.00-800.11, and 4.08-130.51 μg·mL~(-1), respectively. The instrument precision, method repeatability, and solution stability all met requirement, and the average recovery rate was 97.31%-100.2%, with RSD ranging from 0.95% to 2.4%. The content of the five components varied among different Lysionoti Herba samples collected from different regions of Guizhou, and the average content of forsythoside B was the highest. The established qualitative method can rapidly and efficiently identify the chemical components of Lysionoti Herba, and the developed HPLC-UV method can simultaneously determine the content of five components in a simple, ra-pid, and accurate manner, providing a scientific basis for the quality evaluation of Lysionoti Herba.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Ácido Clorogênico , Medicamentos de Ervas Chinesas/química
5.
Zhongguo Zhong Yao Za Zhi ; (24): 6347-6360, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008833

RESUMO

Xanthoceras sorbifolium seeds have a wide range of applications in the food and pharmaceutical industries. To compare and analyze the chemical compositions of different parts of X. sorbifolium seeds and explore the potential value and research prospects of non-medicinal parts, this study used ultra-high-performance liquid chromatography quadrupole Orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) to detect the chemical composition of various parts of the seeds. A total of 82 components were preliminary identified from X. sorbifolium seeds, including 5 amino acids, 4 polyphenols, 3 phenylpropionic acids, 7 organic acids, 15 flavonoids, 6 glycosides, and 23 saponins. Mass spectrometry molecular networking(MN) analysis was conducted on the results from different parts of the seeds, revealing significant differences in the components of the seed kernel, seed coat, and seed shell. The saponins and flavonoids in the seed kernel were superior in terms of variety and content to those in the seed coat and shell. Based on the chromatographic peaks of different parts from multiple batches of samples, multivariate statistical analysis was carried out. Four differential components were determined using HPLC, and the average content of these components in the seed kernel, seed coat, and seed shell were as follows: 0.183 6, 0.887 4, and 1.440 1 mg·g~(-1) for fraxin; 0.035 8, 0.124 1, and 0.044 5 mg·g~(-1) for catechin; 0.032 9, 0.072 0, and 0.221 5 mg·g~(-1) for fraxetin; 0.435 9, 2.114 7, and 0.259 7 mg·g~(-1) for epicatechin. The results showed that catechin and fraxetin had relatively low content in all parts, while fraxin had higher content in the seed coat and seed shell, and epicatechin had higher content in the seed kernel and seed coat. Therefore, the seed coat and seed shell possess certain development value. This study provides rapid analysis and comparison of the chemical compositions of different parts of X. sorbifolium seeds, which offers an experimental basis for the research and clinical application of medicinal substances in X. sorbifolium seeds.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Catequina/análise , Flavonoides/análise , Sementes/química , Saponinas/análise
6.
Artigo em Chinês | WPRIM | ID: wpr-940706

RESUMO

ObjectiveTo analyze the differential components in water extract of Chuanxiong Rhizoma before and after processing with wine, and to explore the molecular mechanism of Chuanxiong Rhizoma processed with wine in enhancing anti-cerebral ischemia injury. MethodUltra high performance liquid chromatography tandem quadrupole orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was used to qualitatively analyze the main chemical components in water extract of Chuanxiong Rhizoma based on the spectral information of compound, comparison of reference substance and references. The chemical pattern recognition method was used to screen the differential components of Chuanxiong Rhizoma before and after processing. Based on these differential components, the potential targets of differential components were predicted by online databases, and the related targets of cerebral ischemia were searched. Cytoscape 3.6.0 was used to establish the network diagram of differential components-action targets-diseases of Chuanxiong Rhizoma processed with wine. The protein-protein interaction (PPI) network of intersection targets was constructed by STRING 11.5. The potential targets of differential components against cerebral ischemia were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis through DAVID 6.8. At the same time, the chemical compounds with high relative content and increased peak area after wine processing were docked with their corresponding targets to verify the mechanism of enhanced effect after wine processing. ResultA total of 71 chemical components were identified from Chuanxiong Rhizoma, 34 differential components and 603 potential targets were screened out. At the same time, a total of 769 disease targets and 60 intersection targets were obtained. Seven key targets were identified through PPI network analysis, including JUN, signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase 3 (MAPK3), interleukin-1β (IL-1β), vascular endothelial growth factor A (VEGFA), Caspase-3 (CASP3) and mtrix metalloproteinase 9 (MMP9). Tumor necrosis factor (TNF) signaling pathway was the main differential signaling pathway. The results of molecular docking showed that differential components (senkyunolide K, senkyunolide F, 3-n-butylphthalide, Z,Z′-6,8′,7,3′-diligustilide, ferulic acid and Z-ligustilide) and corresponding targets had good binding activities. ConclusionThe synergistic mechanism of Chuanxiong Rhizoma processed with wine may be related to the enhanced inhibitory effect of inflammatory reaction.

7.
Zhongguo Zhong Yao Za Zhi ; (24): 1051-1063, 2022.
Artigo em Chinês | WPRIM | ID: wpr-928025

RESUMO

This study aimed to explore the anti-depressant components of Rehmanniae Radix and its action mechanism based on network pharmacology combined with molecular docking. The main components of Rehmanniae Radix were identified by ultra-high performance liquid chromatography-quadrupole/Orbitrap high resolution mass spectrometry(UPLC-Q-Orbitrap HRMS), and the related targets were predicted using SwissTargetPrediction. Following the collection of depression-related targets from GeneCards, OMIM and TTD, a protein-protein interaction(PPI) network was constructed using STRING. GO and KEGG pathway enrichment analysis was performed by Metascape. Cytoscape 3.7.2 was used to construct the networks of "components-targets-disease" and "components-targets-pathways", based on which the key targets and their corresponding components were obtained and then preliminarily verified by molecular docking. Rehmanniae Radix contained 85 components including iridoids, ionones, and phenylethanoid glycosides. The results of network analysis showed that the main anti-depressant components of Rehmanniae Radix were catalpol, melittoside, genameside C, gardoside, 6-O-p-coumaroyl ajugol, genipin-1-gentiobioside, jiocarotenoside A1, neo-rehmannioside, rehmannioside C, jionoside C, jionoside D, verbascoside, rehmannioside, cistanoside F, and leucosceptoside A, corresponding to the following 16 core anti-depression targets: AKT1, ALB, IL6, APP, MAPK1, CXCL8, VEGFA, TNF, HSP90 AA1, SIRT1, CNR1, CTNNB1, OPRM1, DRD2, ESR1, and SLC6 A4. As revealed by molecular docking, hydrogen bonding and hydrophobicity might be the main action forms. The key anti-depression targets of Rehmanniae Radix were concentrated in 24 signaling pathways, including neuroactive ligand-receptor interaction, neurodegenerative disease-multiple diseases pathway, phosphatidylinositol 3-kinase/protein kinase B pathway, serotonergic synapse, and Alzheimer's disease.


Assuntos
Humanos , Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento Molecular , Farmacologia em Rede , Doenças Neurodegenerativas , Extratos Vegetais , Rehmannia
8.
Artigo em Chinês | WPRIM | ID: wpr-906368

RESUMO

Objective:An ultra-high performance liquid chromatography coupled with quadrupole-orbitrap high resolution mass spectrometry (UPLC-Q-Orbitrap HRMS) was developed to analyze and identify the chemical constituents in <italic>Coptis chinensis</italic> inflorescence. Method:The chromatographic separation was performed on ACQUITY UPLC BEH C<sub>18</sub> column (2.1 mm×100 mm, 1.7 μm) with the mobile phase of 0.1% formic acid aqueous solution (A)-acetonitrile (B) for gradient elution (0-15 min, 10%-22%B; 15-20 min, 22%B; 20-25 min, 22%-44%B; 25-35 min, 44%-50%B; 35-40 min, 50%-60%B; 40-55 min, 60%-85%B), the flow rate was 0.15 mL·min<sup>-1</sup>, the injection volume was 3 μL and the column temperature was 30 ℃. HRMS was equipped with electrospray ionization (ESI) and scanned in positive and negative ion modes by means of full scan/data dependent secondary scan (Full MS/dd-MS<sup>2</sup>). Compound Discoverer 3.0 software combined with mzCloud, mzVault, ChemSpider databases and HRMS database of components in traditional Chinese medicine were used to analyze and identify the collected data by HRMS, based on accurate relative molecular mass, retention time and characteristic ion fragmentation of the compounds, as well as literature information and relevant reference materials. Result:A total of 51 chemical constituents were identified in <italic>C</italic>.<italic> chinensis</italic> inflorescence, including 16 alkaloids, 14 flavonoids, 7 phenylpropanoids, 7 organic acids and 7 others. Among them, 10 components [berberine, palmatine, coptidine, rutin, quercetin, isoquercitrin, chlorogenic acid, cryptochlorogenic acid,<italic> D</italic>-(-) quinic acid and <italic>D</italic>-proline] were unambiguously identified by comparing with reference standards. Conclusion:The established UPLC-Q-Orbitrap HRMS can be used to accurately analyze and identify chemical constituents of <italic>C. chinensis</italic> inflorescence. A total of 41 chemical constituents are reported from <italic>C. chinensis</italic> inflorescence for the first time and 6 alkaloids are found from the <italic>C. chinensis</italic> for the first time. These findings can provide methodological reference and experimental basis for the basic research of quality evaluation and efficacy materials of <italic>C. chinensis</italic> inflorescence, and lay a foundation for its further development and utilization.

9.
Artigo em Chinês | WPRIM | ID: wpr-906402

RESUMO

Objective:To analyze and identify the flavonoids of Citri Reticulatae Pericarpium with different aging time by an ultra-performance liquid chromatography-quadrupole-electrostatic field orbitrap high resolution mass spectrometry (UPLC-Q-Orbitrap HRMS). Method:Compounds were separated on Agilent Extend-C<sub>18</sub> column (3.0 mm×100 mm, 1.8 μm), mobile phase was 0.1% acetic acid aqueous solution (A)-0.1% acetic acid methanol solution (B) for gradient elution (0-25 min, 5%-95%B; 25-30 min, 95%B; 30-30.1 min, 95%-5%B; 30.1-35 min, 5%B), the flow rate was 0.4 mL·min<sup>-1</sup>, and the column temperature was set at 30 ℃. High resolution mass spectrometry was performed with electrospray ionization (ESI), and scanned in positive and negative ion modes by means of full scan/data dependent secondary scan (Full MS/dd-MS<sup>2</sup>). The multistage ion fragment information combined with mzCloud network database, local high resolution mass spectrometry database of traditional Chinese medicine components (OTCML), literature information and relevant reference materials were used for accurate qualitative analysis. Result:Totally 43 flavonoids in Citri Reticulatae Pericarpium were identified, including 24 flavones, 5 flavonols, 13 dihydroflavones and 1 chalcone. The flavonoids in samples with different aging time were basically consistent in material types, but the peak area was different. According to the comparison of relative content in the peak area, it was found that the relative contents of 30 flavonoids showed an overall increasing trend with the increase of aging time. Among them, the relative contents of 24 flavonoids (such as hesperidin, diosmin, 6-demethoxytangeretin, nobiletin and tangeretin) increased significantly. There was no significant change in the relative contents of the other 13 flavonoids (such as naringenin and neohesperidin). Conclusion:An efficient method is established in this paper to identify flavonoids in Citri Reticulatae Pericarpium with different aging time and their relative content changes rapidly and accurately. The findings provide a methodological reference for the study on pharmacodynamic material base and quality control of Citri Reticulatae Pericarpium, and it provides experimental basis that drugs processed long time ago have better effect of Citri Reticulatae Pericarpium.

10.
Artigo em Chinês | WPRIM | ID: wpr-872965

RESUMO

Objective::Ultra high performance liquid chromatography coupled with Q-Exactive Focus hybrid quadrupole and orbitrap high resolution mass spectrometer (UHPLC-Q-Orbitrap HRMS) was applied for identification of chemical constituents in Pimpinella thellungiana. Method::Chromatographic separation was performed on a WATERS BEH C18 column (2.1 mm ×50 mm, 1.7 μm). The mobile phase consisted of 0.1% formic acid aq (A) and acetonitrile (B) with a gradient elution. Mass spectral analysis were performed on Q-Exactive Focus hybrid quadrupole and orbitrap mass spectrometer. The mass spectrometer was connected to UHPLC instrument via an ESI interface. Samples were analyzed in negative ion mode by the full-scan-dd MS 2(data-dependent MS/MS) scanning mode. Then the constituents of P. thellungiana were identified by compared HRMS data with those of the standard compounds, MS cleavage mechanism and the related literatures. Result::Based on the characteristic mass data of accurate molecular weight and fragmentation ion information, 29 chemical constituents were identified including 19 chlorogenic acids, 7 flavonoids and 3 phenolic acid. Among them, the identified components except luteolin-7-O-β-D-glucuronopyranoside and apigenin-7-O-β-D-glucuronopyranoside were reported in P. thellungiana for the first time. Conclusion::The established UHPLC-Q-Orbitrap HRMS method can be used to identify the chemical constituents of P. thellungiana quickly and accurately, providing the scientific evidence for its quality evaluation and material basis research.

11.
Artigo em Chinês | WPRIM | ID: wpr-873203

RESUMO

Objective:Based on UPLC-Q-Orbitrap HRMS and network pharmacology, the material basis, processing principle and molecular mechanism of bile processed Coptidis Rhizoma (BPRC) for reducing excess fire of liver and gallbladder were elucidated.Method:The chemical ingredients of BPRC were analyzed by UPLC-Q-Orbitrap HRMS. Chromatographic separation was achieved with 0.1% formic acid solution (A)-acetonitrile (B) as the mobile phase in gradient elution (0-20 min, 5%-80%B; 20-30 min, 80%-95%B; 30-30.1 min, 95%-5%B; 30.1-35 min, 95%-5%B). The flow rate was 0.2 mL·min-1, electrospray ionization (ESI) was applied and operated in positive and negative ion modes, the acquisition range was m/z 100-1 500. Based on the clinical manifestations and pathogenic factors of excess fire of liver and gallbladder, the potential effective ingredients, targets and functional characteristics of BPRC were predicted and analyzed by online database. Based on the characteristics of the new active ingredients after processing, the processing principle of BPRC was investigated by network pharmacology.Result:A total of 19 ingredients in BPRC were identified, six of which were newly added cholic acids after processing. It was determined that the alkaloids, including worenine, epiberberine, jatrorrhizine, coptisine, berberrubine, berberine, palmatine and cholic acids, including glycohyodeoxycholic acid, taurohyodeoxycholic acid, glycochenodeoxycholic acid, hyodeoxycholic acid and taurochenodeoxycholic acid, were identified as material basis of BPRC. A total of 66 targets of reducing excess fire of liver and gallbladder of BPRC were screened. There were 16 common targets and multiple same signaling pathways between cholic acids and alkaloids of BPRC, and many lesions of excess fire of liver and gallbladder were target organs of cholic acids. By acting on some targets, including albumin (ALB), Caspase-3 (CASP3), mitogen-activated protein kinase 14 (MAPK14), glucocorticoid receptor (NR3C1) and other targets and some signaling pathways, including interleukin (IL)-17, phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), MAPK and other pathways, BPRC could reduce excess fire of liver and gallbladder.Conclusion:BPRC has the characteristics of multi-component, multi-target and multi-pathway on reducing excess fire of liver and gallbladder. Bile and Coptidis Rhizoma have synergistic effect and bile can enhance the intensity of BPRC in lesions, which confirms the processing theory that the effect of BPRC on excess fire of liver and gallbladder enhance after being processed by bile.

12.
Artigo em Chinês | WPRIM | ID: wpr-862673

RESUMO

Objective::To analyze and identify the chemical constituents of Citri Sarcodactylis Fructus by an ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap high-resolution mass spectrometry (UPLC-Q-Orbirap HRMS) method. Method::Compounds were separated on Thermo Scientific Accucore™ C18 column (3 mm×100 mm, 2.6 μm). The mobile phase was 0.1% formic acid solution and 0.1% formic acetonitrile solution. The flow rate was 0.3 mL·min-1, and the column temperature was set at 30 ℃. HRMS was performed using an electrospray ion source (ESI), and scanned in a positive ion mode by means of full scan/data dependent secondary scan (Full MS/dd-MS2). Compound Discoverer 3.0 software that could be linked to mzCloud network database and local high-resolution mass spectrometry database of traditional Chinese medicine components was used to analyze the data, based on accurate molecular mass, retention behaviors and characteristic ion fragmentation of the compounds, as well as literature information and relevant reference materials. Result::Totally 54 chemical constituents in Citri Sarcodactylis Fructus were identified, including 16 flavonoids, 17 coumarins, 3 limonoids, 6 nucleosides and nucleobases, 2 organic acids, 3 aromatic aldehydes, 1 amino acid and 6 other components. Conclusion::The established UPLC-Q-Orbitrap HRMS method can be used to effectively and rapidly identify main chemical constituents of Citri Sarcodactylis Fructus. The findings provide a methodological reference and theoretical foundation for defining the pharmacodynamic material base and optimizing quality control index of Citri Sarcodactylis Fructus, which is of guiding significance for further development and utilization of the resources.

13.
Zhongcaoyao ; Zhongcaoyao;(24): 6168-6177, 2020.
Artigo em Chinês | WPRIM | ID: wpr-845978

RESUMO

Objective: To establish a rapid and accurate analytical method for the identification of complex system of traditional Chinese medicine, and to systematically clarify the chemical composition of sesquiterpenes in Alpinia oxyphylla. Method: On the basis of optimizing the extraction process of sesquiterpenes, the accurate molecular weight and secondary fragment ions information of unknown compounds were captured by ultra-high performance liquid chromatography-quadrupole/orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). Compared with the relative retention time and mass spectrometry data of the reference substance, combined with relevant references and databases, the sesquiterpene unknown compounds in the fruits of A. oxyphylla were accurately and rapidly characterized. Results: A total of 24 sesquiterpenes were identified and classified into four categories according to their skeleton structure, including nine eudesmane-type, six cadinane-type, eight eremophilane-type, and one oplopanone-type. Conclusion: In this study, the established analytical method was used to realize the rapid and accurate identification of sesquiterpenes in the fruits of A. oxyphylla, which provided a theoretical basis for the research on the pharmacodynamic substance basis and quality control of the fruits of A. oxyphylla.

14.
Zhongcaoyao ; Zhongcaoyao;(24): 3406-3415, 2020.
Artigo em Chinês | WPRIM | ID: wpr-846322

RESUMO

Objective: In order to establish a rapid and efficient analysis method for identification of the complex components in Jingzhi Guanxin Soft Capsule, and provide the basic research data for the systematic elaboration of its chemical constituents. Methods: An ultra-high performance liquid chromatography-quadrupole/Orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was used for the identification analysis of the components in Jingzhi Guanxin Soft Capsule, and the multistage fragments ions data was compared with the standard substance and literature consulting. Results: Forty-three compounds were identified in this study, including flavones, phthalides, organic acids, quinones and other categories. Conclusion: The chemical constituents of Jingzhi Guanxin Soft Capsule are identified systematically, accurately and efficiently, which provide the theory basis for the further research of its pharmacodynamic material basis and quality control.

15.
Zhongcaoyao ; Zhongcaoyao;(24): 2408-2417, 2020.
Artigo em Chinês | WPRIM | ID: wpr-846451

RESUMO

Objective: To systematically study the chemical components of Tenghuang Jiangu Capsule, explore the main mechanism of action, and provide some evidences for the research of its pharmacodynamic substances. Methods: In this study, UHPLC-Q-Orbitrap HRMS was used to comprehensively analyze the main chemical components of Tenghuang Jiangu Capsule. According to the MS/MS spectrometry information of compounds, the chemical information of this herbal formula can be quickly and accurately identified by comparison with standards or references. Next, the BAT-MAN-TCM database was used to predict the targets of the identified chemical components. The KEGG pathway annotation analysis and GO enrichment analysis were further carried out through the DAVID database to screen out the main pharmacodynamic substances of Tenghuang Jiangu Capsule and explore the potential mechanisms. Results: A total of 34 chemical components were identified in Tenghuang Jiangu Capsule. The "component-target" network analysis indicated that the major components including kaempferol, isoflavoues aglycone, ursolic acid, formononetin, and stigmasterol might act on some key targets such as Bcl-2, BAX, AKt, PPARG, PTGS1, PTGS2, TNF, IL6, F7, IL1B, etc. The results indicated that osteoclast differentiation, NF-κB, PI3K-Akt, renal cell, and platelet activation might be the main action pathways of exerting the therapeutic effect of bone protection, nourishing kidney, promoting blood circulation and relieving pain of Tenghuang Jiangu Capsule. Conclusion: In this study, UHPLC-Q-Orbitrap HRMS combined with network pharmacology was used to preliminarily clarify the chemical composition and reveal potential mechanism of Tenghuang Jiangu Capsule. The results provided scientific theoretical basis for screening the effective ingredients and further clarifying the mechanism of action of Tenghuang Jiangu Capsule.

16.
Zhongcaoyao ; Zhongcaoyao;(24): 599-606, 2020.
Artigo em Chinês | WPRIM | ID: wpr-846619

RESUMO

Objective: To systematically study the main chemical components of Fufang Shangtong Capsule and explore the main mechanism of its effect, and provide some reference for the research of its pharmacodynamic substance. Methods: In this study, UHPLC-Q-Orbitrap HRMS was used to comprehensively analyze the main chemical components of Fufang Shangtong Capsule. The chromatographic column was Waters Acquity UPLC® BEH C18 chromatographic column (50 mm ×2.1 mm, 1.7 μm) and the mobile phase was acetonitrile (A)-0.1% formic acid water (B). According to the MS/MS spectrometry information of compounds, and the comparison with standards or references, the chemical information of drugs can be quickly and accurately identified. On this basis, the network pharmacology method was used to analyze the chemical composition target of the drug, enrich its function, preliminarily select the main effective substances of the drug, and simultaneously explore its mechanism of action. Results: A total of 36 chemicals were identified in this study from Fufang Shangtong Capsule. The target function of enrichment analysis showed that the drug mainly played its therapeutic effect on regulating vascular endothelial, vascular smooth muscle pain, affecting platelet function, promoting energy supply, reducing inflammation and relieving pain, so as to exert its efficacy in promoting blood circulation and removing stasis, invigorating qi and relieving pain. Conclusion: In this study, UHPLC-Q-Orbitrap HRMS combined with network pharmacology was used, wich provided scientific theoretical basis and important reference for the identification of effective ingredients, screening of quality markers and the study of potential mechanism of action of Fufang Shangtong Capsule.

17.
Zhongguo Zhong Yao Za Zhi ; (24): 5537-5554, 2020.
Artigo em Chinês | WPRIM | ID: wpr-878791

RESUMO

In this study, the chemical profiling of Jingyin Granules and the tissue distribution of nine major constituents in this Chinese medicine were performed after oral administration of Jingyin Granules to rats, by using UHPLC-Q-Exactive Orbitrap HR-MS. An Acquity UPLC BEH C_(18) chromatographic column(2.1 mm×100 mm, 1.7 μm) was used as solid phase, while the mobile phase was methanol and 0.1% formic acid water for gradient elution. The major constituents in this Chinese medicine were quickly and accurately identified, via comparison with the retention times and MS/MS spectra of the standards. A total of 106 chemicals were identified from Jingyin Granules, including 24 kinds of organic acids, 47 kinds of flavonoids, 10 kinds of iridoids, and 21 kinds of saponins and 4 kinds of other compounds. After oral administered Jingyin Granules to rats, 48, 30, 25, 23, 45, 34, 39, 26, 19 prototype compounds were identified in serum, heart, liver, spleen, lung, kidney, brain, fat, and testicles, respectively. Meanwhile, an LC-MS based analytical method was established for simultaneous determination of chlorogenic acid, swertiamarin, caffeic acid, sweroside, liquiritin, prim-O-glucosylcimifugin, arctiin, 5-O-methylvisammioside and arctigenin in biological samples. The tissue distribution(serum, liver and lung) of these nine aim constituents in rats after oral administration of Jingyin Granules were investigated. It was found that these nine constituents could be quickly absorbed into circulation system and then distributed to liver and lung tissues. Except arctigenin, the exposure of other eight aim constituents to serum and lung was peaked at 1 h. At 1 h, the exposure of these components to lung tissue were ranked as follows: swertiamarin [(75 191.0±3 483.21) ng·g~(-1)]>arctiin [(2 716.5±36.06) ng·g~(-1)]>5-O-methylvisammioside [(585.1±0.71) ng·g~(-1)]>arctigenin [(437.45±3.18) ng·g~(-1)]>chlorogenic acid [(308.1±5.66) ng·g~(-1)]>prim-O-glucosylcimifugin [(211.35±2.19) ng·g~(-1)]>sweroside [(184.3±9.05) ng·g~(-1)]>caffeic acid [(175.95±2.05) ng·g~(-1)]>liquiritin [(174.78±153.34) ng·g~(-1)]. In summary, an UHPLC-Q-Exactive Orbitrap HR-MS method has been established for rapid and accurate identification of the constituents in Jingyin Granules, while the tissue distribution of nine major absorpted constituents were investigated in rats following oral administration of Jingyin Granules. These findings provided key information and guidance for further studies on pharmacodynamic substances and clinical applications of Jingyin Granules.


Assuntos
Animais , Ratos , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Distribuição Tecidual
18.
Chinese Pharmaceutical Journal ; (24): 327-333, 2019.
Artigo em Chinês | WPRIM | ID: wpr-858074

RESUMO

OBJECTIVE: To establish an analytical method of ultra performance liquid chromatography-quadrupole/orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) for identification and quantitation of the multi-constituents of Danshen-chuanxiongqin injection. METHODS: The method of UHPLC-HRMS was developed to identify the complex chemical composition and full ms scan mode was used to determine the main active ingredients precisely, then the means of principal component analysis (PCA) was used to comprehensively assess the quality of Danshen-chuanxiongqin injection. RESULTS: A total of 23 chemical constituents were identified in Danshen-chuanxiongqin injection, 14 of which were unambiguously identified by comparing with chemical standards, and seven major compounds, ligustrazine, danshensu, salvianolic acid A, succinic acid, rosmarinic acid, protocatechuic aldehyde, caffeic acid, in Danshen-chuanxiongqin Injection were determined accurately. The analysis by multivariate data processing software SIMCA 14.0 indicated that the quality of most batches of samples were stable except ligustrazine, danshensu, and salvianolic acid A which were a bit unstable in some individual batches, and it was essential to monitor the content of salvianolic acid A to control the drug quality. CONCLUSION: The established HPLC-TOF-MS/MS method has the properties of rapid identification, high specificity, simpliness, and feasibility, which can be used as a better means for the qualitative and quantitative analysis of danshen-chuanxiongqin injection. Moreover, it lays the ground for quality control of the drug and provides data reference for the rational use in clinic.

19.
Zhongcaoyao ; Zhongcaoyao;(24): 5930-5940, 2019.
Artigo em Chinês | WPRIM | ID: wpr-850621

RESUMO

Objective: To investigate the chemical composition of Shensong Yangxin Capsule, a novel ultra high performance liquid chromatography-quadrupole/orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was employed to establish a method that could identify the ingredients systematically and rapidly. Methods: The information of accurate mass and multistage fragment ions was obtained by the novel UHPLC-Q-Orbitrap technology. Chemical constituents were characterized by comparing the relative retention time and the mass data of the reference substance, meanwhile consulting the reference literature or the Mass Bank, Chemical Book network database. Results: A total of 54 compounds were finally identified in this research, including the phenolic acids, flavones, terpenoids, anthraquinones, alkaloids and others. Conclusion: A method was established in this study to identify various chemical constituents of Shensong Yangxin Capsule systematically, rapidly and accurately. The identified chemical components mostly cover the main constituents of each medicinal material in the formula. Our work will lay a scientific foundation for the bioactive components screening, quality control improvement and further clinical application of this herbal formulation.

20.
Zhongcaoyao ; Zhongcaoyao;(24): 3291-3301, 2019.
Artigo em Chinês | WPRIM | ID: wpr-850974

RESUMO

Objective: In order to establish an efficient analysis method for the identification of the complex components in Qianliexin Capsule rapidly, and provide the basic research data for the systematic elaboration of its chemical constituents. Methods: An ultra-high performance liquid chromatography-quadrupole/Orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was used for the identification analysis of the components in Qianliexin Capsule accurately, and the multistage fragments ions data was compared with the standard substance and consulting the literatures. Results: Sixty-one compounds were identified in this study, including 12 flavones, 11 coumarins, six terpenes, 19 organic acids and other categories. Conclusion: The accurate and rapid identification of various chemical constituents of Qianliexin Capsule was achieved in this study, which provided the theory basis for the pharmacodynamic material and the quality control study of Qianliexin Capsule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA