Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.747
Filtrar
1.
Journal of Zhejiang University. Medical sciences ; (6): 1-7, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1009951

RESUMO

OBJECTIVES@#To isolate potassium ion channel Kv4.1 inhibitor from centipede venom, and to determine its primary and spatial structure.@*METHODS@#Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom, and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording. The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with MALDI-TOF, its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry, its patial structure was established based on iterative thread assembly refinement online analysis.@*RESULTS@#A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8, and its primary sequence consists of 53 amino acid residues, showed as NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSGDSRLKD-OH. Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell, with 1.0 μmol/L SsTx-P2 suppressing 95% current of Kv4.1 channel. Its spatial structure showed that SsTx-P2 shared a conserved helical structure.@*CONCLUSIONS@#The study has isolated a novel peptide SsTx-P2 from centipede venom, which can potently inhibit the potassium ion channel Kv4.1, and its spatial structure displays a certain degree of conservation.

2.
Chinese Journal of Traumatology ; (6): 42-52, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1009505

RESUMO

PURPOSE@#Mannitol is one of the first-line drugs for reducing cerebral edema through increasing the extracellular osmotic pressure. However, long-term administration of mannitol in the treatment of cerebral edema triggers damage to neurons and astrocytes. Given that neural stem cell (NSC) is a subpopulation of main regenerative cells in the central nervous system after injury, the effect of mannitol on NSC is still elusive. The present study aims to elucidate the role of mannitol in NSC proliferation.@*METHODS@#C57 mice were derived from the animal house of Zunyi Medical University. A total of 15 pregnant mice were employed for the purpose of isolating NSCs in this investigation. Initially, mouse primary NSCs were isolated from the embryonic cortex of mice and subsequently identified through immunofluorescence staining. In order to investigate the impact of mannitol on NSC proliferation, both cell counting kit-8 assays and neurospheres formation assays were conducted. The in vitro effects of mannitol were examined at various doses and time points. In order to elucidate the role of Aquaporin 4 (AQP4) in the suppressive effect of mannitol on NSC proliferation, various assays including reverse transcription polymerase chain reaction, western blotting, and immunocytochemistry were conducted on control and mannitol-treated groups. Additionally, the phosphorylated p38 (p-p38) was examined to explore the potential mechanism underlying the inhibitory effect of mannitol on NSC proliferation. Finally, to further confirm the involvement of the p38 mitogen-activated protein kinase-dependent (MAPK) signaling pathway in the observed inhibition of NSC proliferation by mannitol, SB203580 was employed. All data were analyzed using SPSS 20.0 software (SPSS, Inc., Chicago, IL). The statistical analysis among multiple comparisons was performed using one-way analysis of variance (ANOVA), followed by Turkey's post hoc test in case of the data following a normal distribution using a Shapiro-Wilk normality test. Comparisons between 2 groups were determined using Student's t-test, if the data exhibited a normal distribution using a Shapiro-Wilk normality test. Meanwhile, data were shown as median and interquartile range and analyzed using the Mann-Whitney U test, if the data failed the normality test. A p < 0.05 was considered as significant difference.@*RESULTS@#Primary NSC were isolated from the mice, and the characteristics were identified using immunostaining analysis. Thereafter, the results indicated that mannitol held the capability of inhibiting NSC proliferation in a dose-dependent and time-dependent manner using cell counting kit-8, neurospheres formation, and immunostaining of Nestin and Ki67 assays. During the process of mannitol suppressing NSC proliferation, the expression of AQP4 mRNA and protein was downregulated, while the gene expression of p-p38 was elevated by reverse transcription polymerase chain reaction, immunostaining, and western blotting assays. Subsequently, the administration of SB203580, one of the p38 MAPK signaling pathway inhibitors, partially abrogated this inhibitory effect resulting from mannitol, supporting the fact that the p38 MAPK signaling pathway participated in curbing NSC proliferation induced by mannitol.@*CONCLUSIONS@#Mannitol inhibits NSC proliferation through downregulating AQP4, while upregulating the expression of p-p38 MAPK.


Assuntos
Humanos , Animais , Manitol/farmacologia , Edema Encefálico , Células-Tronco Neurais/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia , Proliferação de Células
3.
Chinese Journal of Traumatology ; (6): 27-33, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1009494

RESUMO

PURPOSE@#Dabigatran is usually prescribed in recommended doses without monitoring of the blood coagulation for the prevention of venous thromboembolism after joint arthroplasty. ABCB1 is a key gene in the metabolism of dabigatran etexilate. Its allele variants are likely to play a pivotal role in the occurrence of hemorrhagic complications.@*METHODS@#The prospective study included 127 patients with primary knee osteoarthritis undergoing total knee arthroplasty. Patients with anemia and coagulation disorders, elevated transaminase and creatinine levels as well as already receiving anticoagulant and antiplatelet therapy were excluded from the study. The association of ABCB1 gene polymorphisms rs1128503, rs2032582, rs4148738 with anemia as the outcome of dabigatran therapy was evaluated by single-nucleotide polymorphism analysis with a real-time polymerase chain reaction assay and laboratory blood tests. The beta regression model was used to predict the effect of polymorphisms on the studied laboratory markers. The probability of the type 1 error (p) was less than 0.05 was considered statistically significant. BenjaminiHochberg was used to correct for significance levels in multiple hypothesis tests. All calculations were performed using Rprogramming language v3.6.3.@*RESULTS@#For all polymorphisms there was no association with the level of platelets, protein, creatinine, alanine transaminase, prothrombin, international normalized ratio, activated partial thromboplastin time and fibrinogen. Carriers of rs1128503 (TT) had a significant decrease of hematocrit (p = 0.001), red blood count and hemoglobin (p = 0.015) while receiving dabigatran therapy during the postoperative period compared to the CC, CT. Carriers of rs2032582 (TT) had a significant decrease of hematocrit (p = 0.001), red blood count and hemoglobin (p = 0.006) while receiving dabigatran therapy during the postoperative period compared to the GG, GT phenotypes. These differences were not observed in carriers of rs4148738.@*CONCLUSION@#It might be necessary to reconsider thromboprophylaxis with dabigatran in carriers of rs1128503 (TT) or rs2032582 (TT) polymorphisms in favor of other new oral anticoagulants. The long-term implication of these findings would be the reduction of bleeding complications after total joint arthroplasty.


Assuntos
Humanos , Anemia/prevenção & controle , Anticoagulantes/uso terapêutico , Artroplastia do Joelho/efeitos adversos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Creatinina , Dabigatrana/uso terapêutico , Hemoglobinas , Polimorfismo Genético , Estudos Prospectivos , Tromboembolia Venosa/prevenção & controle
4.
Biomedical and Environmental Sciences ; (12): 71-84, 2024.
Artigo em Inglês | WPRIM | ID: wpr-1007909

RESUMO

OBJECTIVE@#To investigate the role and molecular mechanism of exosomal miR-224-5p in colorectal cancer (CRC).@*METHODS@#The miR-224-5p expression in CRC patient tissues and cell-derived exosomes was measured by laser capture microdissection and qRT-PCR, respectively. Dual-luciferase reporter gene assay was used to determine the target gene of miR-224-5p. The protein expressions of p53 and unc-51 like kinase 2 (ULK2) in CRC cells were detected by western blot. Flow cytometry was used to detect cell cycle and apoptosis. Cell proliferation was measured by CCK8 and EdU assay.@*RESULTS@#The miR-224-5p expression was upregulated in CRC tissues and increased progressively with the rise of CRC stage. CRC cells secreted extracellular miR-224-5p mainly in an exosome-dependent manner, and then miR-224-5p could be transferred to surrounding tumor cells to regulate cell proliferation in the form of autocrine or paracrine. Moreover, ULK2 was characterized as a direct target of miR-224-5p and was downregulated in CRC tissues. Interestingly, ULK2 inhibited CRC cell proliferation in a p53-dependent manner. Furthermore, exosome-derived miR-224-5p partially reversed the proliferation regulation of ULK2 on CRC cells.@*CONCLUSION@#Our findings demonstrate that exosome-transmitted miR-224-5p promotes p53-dependent cell proliferation by targeting ULK2 in CRC, which may offer promising targets for CRC prevention and therapy.


Assuntos
Humanos , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Exossomos/metabolismo , Proliferação de Células/genética , Neoplasias Colorretais/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
5.
China Pharmacy ; (12): 198-203, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006178

RESUMO

OBJECTIVE To investigate the effects of echinacoside (ECH) on renal injury in uremia (URE) rats and its mechanism. METHODS URE model of the rat was established by 5/6 nephrectomy. Successfully modeled rats were grouped into uremia group (URE group), ECH low-dose [10 mg/(kg·d)] group, ECH medium-dose [20 mg/(kg·d)] group, ECH high-dose [40 mg/(kg·d)] group, ECH high-dose+anisomycin [p38 mitogen-activated protein kinase (p38 MAPK) pathway activator] group [ECH-H+Ani group, 40 mg/(kg·d) ECH +2 mg/(kg·d) anisomycin], with a sham operation group, 12 mice in each group. Each drug group was given corresponding ECH intragastrically, while ECH-H+Ani group was further injected with anisomycin via the tail vein, once a day, for 8 consecutive weeks. The serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, blood urea nitrogen (BUN), β2-microglobulin (β2-MG), serum creatinine (Scr), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), cystatin C (Cys-C) and 24 h urine protein (24 h UP) as well as the levels of malondialdehyde (MDA) and superoxide dismutase (SOD) activity in renal tissue were all detected; pathological changes of renal tissue were observed; the rate of positive expression of α-smooth muscle protein (α-SMA) and E-cadherin, and the phosphorylation of p38 MAPK and nuclear factor-κB (NF-κB) p65 were determined in renal tissue of rats. RESULTS Compared with URE group, glomerular swelling, damage and necrosis of renal tubular epithelial cells and inflammatory cell infiltration were relieved significantly in ECH groups. The renal injury score, levels of TNF-α, IL-1β, IL-6, BUN, Scr, β2-MG, 24 h UP, NGAL, KIM- 1, Cys-C and MDA, the positive expression rate of α-SMA in renal tissue, the phosphorylation of p38 MAPK and NF-κB p65 were decreased in dose-dependent manner, while SOD activity and the positive expression rate of E-cadherin were obviously increased in dose-dependent manner (P<0.05). Anisomycin significantly attenuated the improvement effect of high-dose ECH on renal injury in URE rats (P<0.05). CONCLUSIONS ECH may inhibit inflammation and oxidative stress, enhance renal function, and improve renal injury in uremic rats by inhibiting the activation of p38 MAPK/NF-κB signaling pathway.

6.
Journal of Pharmaceutical Practice ; (6): 32-37, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005424

RESUMO

Objective To investigate the risk factors of drug resistance in patients with ischemic stroke by clopidogrel therapy and provide references for promoting clinical individualized drug therapy. Methods A total of 202 inpatients diagnosed with ischemic stroke were admitted and given dual anti-treatment (aspirin+clopidogrel). CYP2C19 genotype was detected by microarray hybridization during hospitalization, and CYP2C19 gene polymorphisms were classified into fast metabolism group, medium metabolism group and slow metabolism group according to the type of drug metabolism. Patients were tested for platelet inhibition induced by adenosine diphosphate (ADP) according to thromboelastographic (TEG) on 7~14 d of drug administration. ADP <30% was classified as clopidogrel drug resistance group and ADP ≥30% as non-resistance group. Logistic regression analysis was used to study the risk factors for the development of clopidogrel resistance. Results Among 202 patients with ischemic stroke, 87 were in the resistant group and 115 in the non-resistant group. The proportion of patients with clopidogrel resistance combined with diabetes and the level of white blood cell count were higher than that in the non-resistant group, and the differences were statistically significant (P<0.05).The proportion of patients with clopidogrel resistance in the CYP2C19 intermediate metabolism group was significantly higher than that in the fast metabolism group, and the rate of platelet inhibition was also significantly lower than that in the fast metabolism group, all with statistically significant differences (P<0.05). Conclusion Combined diabetes mellitus, high white blood cell count levels and CYP2C19 mid-metabolic phenotype are independent risk factors for the development of clopidogrel resistance in patients with ischemic stroke.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 114-123, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005260

RESUMO

ObjectiveTo study whether Chaihu Longgu Mulitang can inhibit hypothalamic inflammation, mitigate anxiety-like behavior, and alleviate anxiety symptoms by regulating the p38 mitogen-activated protein kinase/nuclear factor-κB (p38 MAPK/NF-κB) signaling pathway in the rat model of generalized anxiety disorder (GAD). MethodTwelve out of 74 Wistar rats were randomly selected as the blank group, and the remaining rats were subjected to chronic restraint stress for the modeling of GAD. The open field test (OFT) and elevated Porteus maze test (PMT) were conducted 14 days after modeling to detect the anxiety-like behaviors. Sixty successfully modeled rats were selected and randomized into model, low-, medium-, and high-dose (6, 12, and 24 g·kg-1, respectively) Chaihu Longgu Mulitang, and diazepam (1 mg·kg-1) groups (n=12) and administrated with corresponding drugs for 14 consecutive days. OFT and PMT were then carried out to examine the anxiety-like behaviors of the rats. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in the hypothalamus and serum of rats were determined by the enzyme-linked immunosorbent assay (ELISA). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR)was conducted to determine the mRNA levels of p38 MAPK, NF-κB p65, nuclear factor κB inhibitor α (IκBα), and ionized calcium binding adaptor molecule 1 (Iba-1). The protein levels of p38 MAPK, phosphorylated (p)-p38 MAPK, NF-κB p65, p-NF-κB p65, and IκBα in the hypothalamus of rats were determined by Western blot. The expression of Iba-1 in the hypothalamic microglia was detected by immunofluorescence assay. ResultCompared with the blank group, the model group had decreased body weight, scattered dark yellow fur, increased irritability, and preference to hibernation in the corner. In addition, the modeled rats showed increased edge movement distance and time in OFT (P<0.01) and decreased movement distance and time and the number of entries in the open arm in PMT (P<0.01). The modeling increased the fluorescence intensity of Iba-1 in paraventricular nucleus of hypothalamus (P<0.01), elevated the levels of IL-1β, IL-6, and TNF-α in the serum and hypothalamus (P<0.01), up-regulated the protein and mRNA levels of p38 MAPK, NF-κB p65, p-p38 MAPK, p-NF-κB p65, and Iba-1 (P<0.05, P<0.01), and down-regulated the protein and mRNA levels of IκBα (P<0.01) in the hypothalamus. Compared with the model group, medium- and high-dose Chaihu Longgu Mulitang and diazepam increased the body weight, improved the fur and behaviors, decreased the edge movement distance and time in OFT (P<0.05, P<0.01), and increased the movement distance and time in the open arm in PMT (P<0.05, P<0.01). Furthermore, they decreased the fluorescence intensity of Iba-1 in hypothalamic microglia (P<0.05, P<0.01), lowered the levels of IL-1β, IL-6, and TNF-α in the serum and hypothalamic tissue (P<0.05, P<0.01), down-regulated the mRNA and protein levels of p38 MAPK, NF-κB p65, p-p38 MAPK, p-NF-κB p65, and Iba-1 (P<0.05, P<0.01), and up-regulated the mRNA and protein levels of IκBα (P<0.05, P<0.01) in the hypothalamus. ConclusionChaihu Longgu Mulitang can mitigate anxiety-like behaviors and relieve anxiety in GAD rats by inhibiting the p38 MAPK/NF-κB signaling pathway and reducing the activation of microglia and the levels of pro-inflammatory cytokines in the hypothalamus.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 107-113, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005259

RESUMO

ObjectiveTo investigate the mechanism of Biejiajian Wan in the intervention of primary liver cancer based on long non-coding RNA SNHG5 (lncRNA SNHG5)/micro RNA-26a-5p (miRNA-26a-5p)/glycogen synthase kinase-3β (GSK-3β) signal axis. MethodDouble luciferase reporting assay was used to verify the targeted interaction between lncRNA SNHG5 and miRNA-26a-5p, miRNA-26a-5p, and GSK-3β in HepG2 cells. Nude-mouse transplanted tumor model of human HepG2 were established and randomly divided into model group, Biejiajian Wan low-dose group (0.5 g·kg-1), medium-dose group (1.0 g·kg-1), and high-dose group (2.0 g·kg-1), and sorafenib group (100 mg·kg-1), with 10 mice in each group. The mice were given intragastric administration of normal saline or drug for 28 days, and the tumor volume was measured at different time. Hematoxylin-eosin (HE) staining was used to observe the histological changes of tumors. The nucleic acid levels of lncRNA SNHG5, miRNA-26a-5p, GSK-3β, and β-catenin mPNA in tumor tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). The protein expression levels of GSK-3β and β-catenin in tumor tissue were detected by western blot. ResultCompared with the SNHG5-WT (wild type) + miRNA NC (negative control) group, the relative luciferase activities of the SNHG5-WT + miRNA-26a-5p mimic group were decreased (P<0.05). Compared with the GSK-3β-WT + miRNA NC group, the relative luciferase activity of the GSK-3β-WT + miRNA-26a-5p mimic group was decreased (P<0.05). Compared with the model group, the tumor volume of Biejiajian Wan low-dose, medium-dose, and high-dose groups was significantly decreased (P<0.05, P<0.01). Compared with the model group, the cells in the tumor tissue of nude mice in each dose group of Biejiajian Wan were sparsely arranged with necrocytosis, which showed concentration-dependent changes. Compared with the model group, the expression levels of lncRNA SNHG5, GSK-3β, and β-catenin were decreased (P<0.05, P<0.01), while the expression of miRNA-26a-5p was increased in each dose group of Biejiajian Wan (P<0.05, P<0.01). Compared with the model group, the protein expression levels of GSK-3β and β-catenin were decreased in each dose group of Biejiajian Wan (P<0.05, P<0.01). ConclusionBiejiajian Wan may affect the necrosis of liver cancer cells through lncRNA SNHG5/miRNA-26a-5p/GSK-3β signal axis and thus play an anti-tumor role. This research will provide more theoretical basis for the clinical application of Biejiajian Wan.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 26-36, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1003763

RESUMO

ObjectiveTo study the effect of Qizhu Kang'ai prescription (QZAP) on the gluconeogenesis enzyme phosphoenolpyruvate carboxykinase 1 (PCK1) in the liver of mouse model of liver cancer induced by diethylnitrosamine (DEN) combined with carbon tetrachloride (CCl4) and Huh7 cells of human liver cancer, so as to explore the mechanism on regulating metabolic reprogramming and inhibiting cell proliferation of liver cancer cells. MethodDEN combined with CCl4 was used to construct a mouse model of liver cancer via intraperitoneal injection. A normal group, a model group, and a QZAP group were set up, in which QZAP (3.51 g·kg-1) or an equal volume of normal saline was administered daily by gavage, respectively. Serum and liver samples were collected after eight weeks of intervention. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (γ-GT), and alpha-fetoprotein (AFP) in mice were detected to evaluate liver function changes of mice in each group. Hematoxylin-eosin (HE) staining and Sirius red staining were used to observe pathological changes in liver tissue. In the cell experiment, Huh7 cells were divided into blank group, QZAP low, medium, and high dose groups and/or PCK1 inhibitor (SKF-34288 hydrochloride) group, and Sorafenib group. The corresponding drug-containing serum and drug treatment were given, respectively. Cell counting kit-8 (CCK-8) method, colony formation experiment, Edu fluorescent labeling detection, intracellular adenosine triphosphate (ATP) content detection, and cell cycle flow cytometry detection were used to evaluate the proliferation ability, energy metabolism changes, and change in the cell cycle of Huh7 cells in each group. Western blot was used to detect the protein expression levels of PCK1, serine/threonine kinase (Akt), phosphorylated Akt (p-Akt), and cell cycle-dependent protein kinase inhibitor 1A (p21). ResultCompared with the model group, the pathological changes such as cell atypia, necrosis, and collagen fiber deposition in liver cancer tissue of mice in the QZAP group were alleviated, and the number of liver tumors was reduced (P<0.01). The serum ALT, AST, γ-GT, and AFP levels were reduced (P<0.01). At the cell level, compared with the blank group, low, medium, and high-dose groups of QZAP-containing serum and the Sorafenib group could significantly reduce the survival rate of Huh7 cells (P<0.01) and the number of positive cells with Edu labeling (P<0.01) and inhibit clonal proliferation ability (P<0.01). The QZAP groups could also reduce the intracellular ATP content (P<0.05) and increase the distribution ratio of the G0/G1 phase of the cell cycle (P<0.05) in a dose-dependent manner. Compared with the model group and blank group, PCK1 and p21 protein levels of mouse liver cancer tissue and Huh7 cells in the QZAP groups were significantly reduced (P<0.05,P<0.01), and the p-Akt protein level was significantly increased (P<0.01). Compared with the blank group, the ATP content and cell survival rate of Huh7 cells in the SKF-34288 hydrochloride group were significantly increased (P<0.05), but there was no statistical difference in the ratio of Edu-positive cells and the proportion of G0/G1 phase distribution. Compared with the SKF-34288 hydrochloride group, the QZAP combined with the SKF-34288 hydrochloride group significantly reduced the ATP content, cell survival rate, and Edu-positive cell ratio of Huh7 cells (P<0.05) and significantly increased the G0/G1 phase distribution proportion (P<0.05). ConclusionQZAP may induce the metabolic reprogramming of liver cancer cells by activating PCK1 to promote Akt/p21-mediated tumor suppression, thereby exerting an anti-hepatocellular carcinoma proliferation mechanism.

10.
International Eye Science ; (12): 24-29, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1003500

RESUMO

AIM: To study the protective effect of fenofibrate on diabetic retinal neurodegeneration and observe its effect on miR-26a-5p and its target gene PTEN in the retinal of diabetic mice.METHODS: Diabetic mice models were established and they were gavaged by fenofibrate. H&#x0026;#x0026; E staining and transmission electron microscopy were used to observe the impairments of retinal neurons. Real-time PCR was used to examine the expression of miR-26a-5p, and Western blotting was employed to measure the expression of phosphatase and tensin homologue(PTEN)in the retina of diabetic mice. The expression level of nuclear factor-κB(NF-κB), interleukin-1β(IL-1β)and the morphology of neural tissues were observed.RESULTS: When compared with the diabetic mice, fenofibrate significantly attenuated the damage to retinal ganglion cells and the atrophy of retinal nerve fiber layer. While the level of miR-26a-5p was increased and the levels of PTEN and inflammatory mediators were significantly decreased in the retina of fenofibrate treated diabetic mice, with significant statistical significance(P&#x0026;#x003C;0.05).CONCLUSIONS: Fenofibrate protects against diabetic retinal neurodegeneration by upregulating miR-26a-5p and inhibiting PTEN, attenuating the inflammatory response and alleviating retinal cell injury.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 17-25, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1003404

RESUMO

ObjectiveTo explore the mechanism and pathway of Gandou Fumu decoction (GDFMD) in the development of liver fibrosis in Wilson's disease (WD). MethodFirst, 30 TX-j mice were randomly divided into the model group, high-dose, medium-dose, and low-dose GDFMD groups, and penicillamine group, with six mice in each group, and another six wild-type mice were used as the normal group. The high-dose, medium-dose, and low-dose GDFMD groups were intragastrically administered drugs of 13.92, 6.96, 3.48 g·kg-1. In the penicillamine group, 0.1 g·kg-1 of penicillamine was given by intragastric administration. The model group and the normal group were given equal volume of normal saline, once a day, for four consecutive weeks. Samples were collected four weeks after gavage, and enzyme-linked immunosorbent assay (ELISA) was used to detect type Ⅲ procollagen peptide (PCⅢ), collagen type Ⅳ (Col Ⅳ), hyaluronic acid (HA), and laminin (LN). Hematoxylin-eosin (HE), Masson, and picric acid-Sirus red collagen (Sirus Red) staining were used to observe the histopathological changes of liver fibrosis. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), immunohistochemistry, and Western blot were used to observe the expressions of α-smooth muscle actin (α-SMA) and collagen type Ⅰ (Col Ⅰ), which were related to the activation of hepatic stellate cells (HSCs). The expression of miR-29b-3p was observed by Real-time PCR. The expression of Unc-51-like kinase 1 (ULK1) and its downstream-related factors were observed by Western blot. The downstream genes of miR-29b-3p were verified by the dual luciferase reporter gene detection method. ResultCompared with the normal group, the four items of liver fibrosis (PCⅢ, Col Ⅳ, HA, and LN) in the model group were significantly abnormal (P<0.01), and the pathology was significantly abnormal. The expression of HSC activation-related indicators including α-SMA and Col Ⅰ, as well as α-SMA mRNA and Col Ⅰ mRNA was up-regulated (P<0.05, P<0.01), and miR-29b-3p expression was down-regulated (P<0.01). ULK1, p-ULK1, autophagy-related gene 13 (Atg13), p-Atg13, Beclin-1, FAK family kinase-interacting protein of 200 kDa (FIP200), activating molecule in BECN1-regulated autophagy protein 1 (AMBKA1), and microtubule-associated protein 1 light chain 3Ⅱ/Ⅰ(LC3Ⅱ/Ⅰ) were up-regulated (P<0.05, P<0.01). p62 protein expression was down-regulated (P<0.01). Compared with the model group, the four items of liver fibrosis in the high-dose, medium-dose, and low-dose GDFMD groups and the penicillamine group were significantly improve (P<0.01), and the pathological conditions were improved. The expression of HSC activation-related indicators including α-SMA and Col Ⅰ, as well as α-SMA mRNA and Col Ⅰ mRNA was down-regulated (P<0.05, P<0.01), and the expression of miR-29b-3p was up-regulated (P<0.01). ULK1, p-ULK1, Atg13, p-Atg13, Beclin-1, FIP200, AMBKA1, and LC3Ⅱ/Ⅰ were down-regulated (P<0.05, P<0.01), and p62 protein expression was up-regulated (P<0.01). The prediction software predicted that there was a binding site between miR-29b-3p and ULK1. The dual-luciferase reporter gene detection method indicated that the luciferase activity of the ULK1-WT plasmid-transfected cell group was reduced when miR-29b-3p mimics were co-cultured (P<0.01). ConclusionGDFMD can regulate ULK1-mediated autophagy by up-regulating miR-29b-3p and further exert its anti-hepatic fibrosis effect in Wilson's disease.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-8, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1003402

RESUMO

ObjectiveTo explore the therapeutic effect and mechanism of Guipitang on rats with myocardial ischemia. MethodFifty SD rats were divided into five groups: a control group, a model group, low and high-dose Guipitang (7.52, 15.04 g·kg-1) groups, and a trimetazidine group (0.002 g·kg-1). By intragastric administration of vitamin D3 and feeding rats with high-fat forage and injecting isoproterenol, the rat model of myocardial ischemia was established. After drug treatment of 15 d, an electrocardiogram (ECG) was performed to analyze the degree of myocardial injury. A fully automatic biochemical analyzer was used to detect the changes in the serum levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C). Hematoxylin-eosin (HE) staining and Masson staining were used to observe myocardial histopathological changes. TdT-mediated dUTP nick end labeling (TUNEL) staining was used to detect cardiomyocyte apoptosis. Western blot was adopted to detect the protein levels of extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-ERK1/2 (p-ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), phospho-p38 MAPK (p-p38 MAPK), B-cell lymphoma-2 (Bcl-2)-associated X (Bax), Bcl-2, and cleaved cysteine aspartate proteolytic enzyme (cleaved Caspase-3). ResultCompared with the control group, the ECG S-T segment decreased in the model group. The serum levels of TC, TG, and LDL-C were increased significantly (P<0.05). The arrangement of myocardial tissue was disordered, and the proportion of cardiomyocyte apoptosis increased. The protein levels of cleaved Caspase-3, Bax, and p-p38 MAPK in the heart were increased, and the Bcl-2 expression was decreased (P<0.05). Compared with the model group, the S-T segment downward shift was restored in the low and high-dose Guipitang groups and trimetazidine group, and the levels of TC, TG, and LDL-C were decreased. The protein expression of cleaved Caspase-3 and Bax in the heart dropped, and p-p38 MAPK and p-ERK1/2 protein expressions increased significantly (P<0.05). The degree of myocardial injury was alleviated, and the proportion of cardiomyocyte apoptosis decreased. Bcl-2 protein expression was increased significantly in the low-dose Guipitang group (P<0.05). ERK1/2 and p38 MAPK proteins had no significant difference among different groups. ConclusionGuipitang could alleviate myocardial injury and inhibit cardiomyocyte apoptosis in rats by activating the expression of ERK1/2 and p38 MAPK.

13.
China Pharmacy ; (12): 955-960, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1016718

RESUMO

OBJECTIVE To explore the effects of alfentanil (ALF) on myocardial fibrosis in rats with acute myocardial infarction (AMI) by regulating sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate (S1P) signaling pathway. METHODS Male SD rats were collected to construct AMI model by the ligation of anterior descending branch of left coronary artery. The successfully modeled rats were randomly divided into AMI model group (Model group), ALF low-dose group (ALF-L group, 0.25 mg/kg ALF), ALF high-dose group (ALF-H group, 0.5 mg/kg ALF), high dose of ALF+SphK1 activator group (ALF-H+K6PC-5 group, 0.5 mg/kg ALF+1 μg/g K6PC-5). At the same time, a sham operation group (Sham group) was set up to perform only chest opening/closing operations without ligating the anterior descending branch of left coronary artery, with 15 rats in each group. Rats in each drug group were intraperitoneally injected with the corresponding drug solution, once a day, for 4 consecutive weeks. Twelve hours after the last medication, cardiac function indicators [left ventricular systolic pressure (LVSP), left ventricular ejection fraction (LVEF), left ventricular systolic diameter (LVSD), left ventricular fractional shortening (LVFS)] of rats were detected in each group; the condition of myocardial infarction, pathological changes in myocardial tissue, and degree of fibrosis were observed; serum levels of brain natriuretic peptide (BNP) and cardiac troponin Ⅰ (cTnⅠ) in rats were detected. The protein expressions of collagen Ⅰ , collagen Ⅲ , matrix metalloproteinase-2 (MMP-2), SphK1 and S1P were alsodetected in the myocardial tissue of rats. RESULTS Compared with the Sham group, the arrangement of myocardial cells in the Model group was disordered, with a large number of inflammatory cells infiltrating. The levels of LVSP, LVFS and LVEF in the Model group were significantly reduced (P<0.05); LVSD level, myocardial infarction area, collagen volume fraction, serum levels of BNP and cTnⅠ, the protein expressions of collagen Ⅰ, collagen Ⅲ, MMP-2, SphK1 and S1P in myocardial tissue were significantly increased or enlarged (P<0.05). Compared with the Model group, the pathological changes and degree of fibrosis in the myocardial tissue of rats in each dose group of ALF were improved or relieved, while the quantitative indicators of rats in the ALF-H group were significantly improved and significantly better than those in ALF-L group (P<0.05). K6PC-5 could significantly reverse the improvement effect of high-dose ALF on the above quantitative indicators in rats (P<0.05). CONCLUSIONS ALF can reduce myocardial fibrosis and improve cardiac function in AMI rats, and the effect may be related to the inhibition of the SphK1/S1P signaling pathway.

14.
Acta Pharmaceutica Sinica ; (12): 313-321, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1016646

RESUMO

Sesquiterpenes are natural terpenoids with 15 carbon atoms in the basic skeleton, which mainly exist in plant volatile oil and have important physiological and medicinal value. Cytochrome P450 (CYP450) is a kind of monooxygenase encoded by supergene family, which is one of the largest gene families in plants. It is involved in the synthesis and metabolism of terpenoids, alkaloids and other secondary metabolites. In the process of terpene biosynthesis, CYP450 participates in the post-modification stage of terpenes by introducing functional groups such as hydroxyl, carboxyl and carbonyl, which plays an important role in enriching the diversity of terpenes. The CYP450 enzymes involved in sesquiterpene synthesis and their substrate catalytic specificity mechanisms have been partially investigated. In this paper, the biosynthetic pathway of plant sesquiterpenes, the structure and classification of CYP450 enzymes were briefly introduced, and the CYP450 enzymes involved in sesquiterpene biosynthesis were summarized, in order to provide a reference for intensive study of the role of CYP450 enzymes in the synthesis of sesquiterpenoids.

15.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 367-375, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1016561

RESUMO

Objective@#To evaluate the clinical efficacy of invisible orthodontic appliances without brackets for the distal movement of maxillary molars to improve the ability of orthodontists to predict treatment outcomes.@*Methods@#Web of Science, Cochrane Library, Embase, PubMed, Wanfang Database, CNKI Database, and VIP Database were searched for studies investigating the efficacy of invisible orthodontic appliances for distal movement of maxillary molars in adult patients and published from database inception to August 1, 2023. A total of three researchers screened the studies and evaluated their quality and conducted a meta-analysis of those that met quality standards.@*Results@#This study included 13 pre- and postcontrol trials with a total sample size of 281 patients. The meta-analysis revealed no significant differences in the sagittal or vertical parameters of the jawbone after treatment when compared with those before treatment (P>0.05). The displacement of the first molar was MD=-2.34, 95% CI (-2.83, -1.85); the displacement was MD=-0.95, 95% CI (-1.34, -0.56); and the inclination was MD=-2.51, 95% CI (-3.56, -1.46). There was a statistically significant difference in the change in sagittal, vertical, and axial tilt of the first molar before and after treatment. After treatment, the average adduction distance of the incisors was MD=-0.82, 95% CI (-1.54, -0.09), and the decrease in lip inclination was MD=-1.61, 95% CI (-2.86, -0.36); these values were significantly different from those before treatment (P<0.05).@*Conclusion@#Invisible orthodontic appliances can effectively move the upper molars in a distal direction and control the vertical position of the molars. When the molars move further away, there is some degree of compression and distal tilt movement, which is beneficial for patients with high angles. The sagittal movement of incisors is beneficial for improving the patient's profile.

16.
Shanghai Journal of Preventive Medicine ; (12): 143-149, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1016542

RESUMO

ObjectiveTo investigate the changes in the pathogen spectrum of viral diarrhea in local pediatric inpatients as well as any variations in genotypes of major pathogens during the COVID-19 control period. MethodsFecal samples were collected from the children <5 years who were hospitalized due to acute gastroenteritis in a pediatric hospital in Shanghai. PCR test was carried out to detect rotavirus, norovirus, sapovirus, astrovirus and enteric adenovirus, and then genotyping was performed for major pathogens. ResultsOut of 546 samples, 37.55% tested positive for virus with the following positive rate ranking: norovirus GⅡ (22.16%), group A rotavirus (16.12%), astrovirus (2.93%), enteric adenovirus (2.38%), sapovirus (0.92%) and norovirus GⅠ (0.18%). The predominant genotype within norovirus GⅡ were GⅡ.4[P31] and GⅡ.4[P16] with a proportion of 24.79% and 14.05% respectively. The detection rate of GⅡ.4[P31] dropped significantly over the 2-year period (χ2=16.140,P<0.001). In addition, an emerging rotavirus genotype G8P [8], which was rarely found nationally, was discovered for the first time locally with an increasing proportion, accounting for 7.95% of all rotavirus positive cases. Phylogenic analysis demonstrated that the representative strains of this genotype were genetically closer to the DS-1-like G8P [8] strain found in Southeast Asia. ConclusionThe changes in the prevalence of various norovirus genotypes together with the emergence of rare rotavirus genotype in the local area illustrate the importance of continuous monitoring of viral diarrhea and genotyping of key pathogens. Increased local activity of the rare genotype also adds new parameters in the efficacy evaluation of marketed vaccines and development of potential new vaccines in near future.

17.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 20-28, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1016458

RESUMO

ObjectiveTo study the effects of Epimedii Folium polysaccharides on mice with exercise-induced fatigue and explore its possible mechanism of action. MethodICR male mice screened by swimming training were randomly divided into a control group, model group, vitamin C group, and low, medium, and high dose groups of Epimedii Folium polysaccharides, with eight mice in each group. The exercise-induced fatigue model was established by weight-bearing swimming training in each group except for the control group. After two weeks of weight-bearing swimming, the Epimedii Folium polysaccharide groups were given 100, 200, 400 mg∙kg-1 of Epimedii Folium polysaccharides by gavage, and the vitamin C group was given 200 mg∙kg-1 of vitamin C by gavage. The control group and the model group were given equal amounts of saline for 14 d. At the end of the experimental period, the body mass of the mice in each group and the time of last swimming due to exhaustion were recorded. Serum urea nitrogen (BUN), lactic acid (LA), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidation (GSH-Px), myoglycogen (MG) in skeletal muscle, hepatic glycogen (HG) in the liver were detected by kits. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in muscle tissue. Western blot was used to detect the protein expression of p38 mitogen-activated protein kinase (p38 MAPK), phosphorylation (p)-p38 MAPK, extracellular signal-regulated kinase1/2 (ERK1/2), nuclear factor-κB (NF-κB), p-NF-κB, interleukin-1β (IL-1β), and interleukin-6 (IL-6) in muscle tissue. The immunofluorescence (IF) method was used to detect the expression of tumor necrosis factor-α (TNF-α) in skeletal muscle tissue of mice in each group. ResultCompared with the control group, the body mass of mice in the model group decreased, and the time of last swimming due to exhaustion decreased (P<0.01). In addition, there were significantly higher serum levels of the fatigue metabolites LA, LDH, BUN, and lipid peroxidation product MDA (P<0.01) and decreased levels of MG, HG, SOD, and GSH-Px (P<0.01). The protein expressions of p-p38 MAPK, ERK1/2, p-NF-κB, IL-1β, IL-6, and TNF-α in skeletal muscle tissue were significantly higher than those of the control group (P<0.01). Compared with the model group, the body mass and time of last swimming due to exhaustion of the mice in the low, medium, and high dose groups of Epimedii Folium polysaccharides and the vitamin C group were increased (P<0.05, P<0.01), and the contents of LA, LDH, BUN, and MDA were significantly decreased (P<0.05, P<0.01). The levels of MG, HG, SOD, and GSH-Px increased (P<0.05, P<0.01), and the protein expression levels of p-p38 MAPK, ERK, p-NF-κB, IL-1β, IL-6, and TNF-α in skeletal muscle tissue decreased (P<0.05, P<0.01). ConclusionEpimedii Folium polysaccharides can play a role in alleviating exercise-induced fatigue by inhibiting the p38 MARK/NF-κB signaling pathway, thereby reducing the accumulation of metabolites, improving the activity of antioxidant enzymes, increasing the glycogen content of the body, and reducing inflammation in skeletal muscle.

18.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 261-267, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1016447

RESUMO

ObjectiveTo investigate the effects of morin treatment on bone metabolism and bone mass in aged rats, and to clarify the possible mechanism. MethodsTen young female Sprague-Dawley rats (3 months old) and 20 old female Sprague-Dawley rats (24 months old) were randomly divided into three groups: Control group (CON, 10 young rats); Model group (MOD, 10 young rats); 10 old rats and SangHuangSu Group (SSS, 10 old rats). During the experiment, the SSS group received intraperitoneal injection of morin (10 mg / kg) daily. The treatment lasted for 12 weeks. After treatment, Micro-CT, HE stained sections, serological tests and Western blot were used to observe the treatment effect and possible mechanism. ResultsAfter 12 weeks of treatment, compared with MOD group, the number and density of bone trabeculae in SSS group were significantly improved. The BMD, Conn. D, Tb. N, Tb.Th and Tb.Sp of the left femur in the SSS group were significantly better than those in the MOD group(P <0.05). After 12 weeks of treatment, the levels of CTX-1, osteocalcin, TRACP-5b and PINP in SSS group were significantly lower than those in MOD group(P <0.05). Compared with the MOD group, the ERK1/2-p38 signal pathway was significantly inhibited and the levels of ERK1/2 and p38 were significantly decreased in the SSS group(P <0.05). ConclusionMorin pigment mediates the protective effect on the bones of aged rats by inhibiting the ERK1/2-p38 signaling pathway and reducing bone turnover.

19.
Chinese Pharmacological Bulletin ; (12): 573-581, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013656

RESUMO

Aim To explore the mechanism of action of Ruanmai decoction in treating atherosclerosis through network pharmacology. Methods The chemical components and targets of Ruanmai decoction were queried using TCMSP. Relevant targets for atherosclerosis were retrieved from DrugBank, GeneCards, OMIM, and TTD databases. The " Drug-Active Ingredient-Target" PPI network was constructed using Cyto-scape software. GO and KEGG enrichment analysis were performed using the David database. Molecular docking verification of key components with core targets was conducted using the Seesar software. Atherosclerosis mouse models were established by feeding ApoE mice with a high-fat diet, and Ruanmai decoction granules were administered orally. Aortic pathological sections were stained, blood lipids were measured, and immunofluorescence was used to detect Mac2 and YWHAZ protein expression. Western blot was used to detect p-p38MAPK and C-CASP3 protein expression. Results Ruanmai decoction screened a total of 72 active drug components corresponding to 168 target genes for the treatment of atherosclerosis. The targets were primarily enriched in biological processes related to lip-id metabolism, inflammation and immunity, oxidative stress, vascular endothelial function, cell proliferation and apoptosis, glycolysis, and ubiquitination. Signaling pathways such as МАРК, TNF, PDK-Akt, and IL-17 were also involved. Animal experiments verified that RMJ could regulate the p38MAPK signaling pathway by down-regulating key targets YWHAZ, p-p38MAPK, and C-CASP3, thereby reducing AS inflammation and inflammation-induced apoptosis. Conclusions Ruanmai decoction can inhibit the expression of YWHAZ and activate the p38MAPK signaling pathway, potentially improving vascular inflammation, lipid metabolism, oxidative stress, and other pathological processes by regulating the МАРК, TNF, PDK-Akt, and IL-17 signaling pathways, thus preventing and treating atherosclerosis.

20.
Chinese Pharmacological Bulletin ; (12): 506-514, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1013643

RESUMO

Aim To investigate the effect of miR-141-5p/ZNF705A in chronic myeloid leukemia(CML)cell-derived exosome(Exo)on the adhesion of bone marrow mesenchymal stem cells(BMSCs). Methods The morphology and size of Exo in peripheral blood from CML patients and K562 cells were examined by electron microscopy and NTA particle size analysis. The expressions of Exo and BMSCs marker molecules and adhesion proteins in K562 cells were detected by qRT-PCR and Western blot before and after transfection. The adhesion ability of BMSCs was detected by cell adhesion assay, and the cellular activity of BMSCs was examined using CCK-8. miR-141-5p binding to ZNF705A was detected by luciferase assay. Results qRT-PCR results showed that miR-141-5p expression was significantly reduced in both CML patients and K562 cell-derived Exo. qRT-PCR, Western blot and other results showed that BMSCs in CML patients had significantly reduced the expression of adhesion proteins CD44 and CXCL12, and were able to phagocytose K562 cell-derived Exo. Further, K562-derived Exo was found to reduce CD44 and CXCL12 expression and adhesion in Exo-promoted BMSCs compared with CD34+ cells. Meanwhile, the results of dual luciferase reporter assay verified that miR-141-5p targeted binding to ZNF705A. Finally, we found ZNF705A could be targeted by up-regulating miR-141-5p expression in Exo of K562 cells, which in turn inhibited the adhesion of BMSCs. Conclusions K562 cells down-regulate miR-141-5p expression in Exo and inhibit the adhesion function of BMSCs by targeting ZNF705A, thus regulating the bone marrow hematopoietic function in CML patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA