RESUMO
BACKGROUND:Intervertebral disc degeneration is one of the most common underlying factors causing low back pain.Recent studies have shown that melatonin has a positive effect on alleviating intervertebral disc degeneration.However,the underlying mechanism of melatonin remains to be elucidated. OBJECTIVE:To explore the biological effect and potential mechanism of melatonin in inhibiting hydrogen peroxide(H2O2)-induced injury of human nucleus pulposus cells. METHODS:Human nucleus pulposus cells insolated from degenerative intervertebral disc were cultured in vitro.Cell proliferation and the optimal intervention concentration of melatonin and H2O2 were detected by cell counting kit-8.The Human nucleus pulposus cells treated with H2O2 were used as a model group;the cells treated with H2O2 and intervened with melatonin were used as a melatonin group;the cells cultured in simple medium were used as a control group.The reactive oxygen species levels were detected by 2',7'-dichlorofluorescin diacetate(DCFH-DA),the expression levels of BAX and Caspase3 were detected by immunofluorescence,and the mRNA expression levels of BAX,BCL-2,Casepase3,PI3K and AKT were detected using the real-time fluorescent quantitative reverse transcription PCR. RESULTS AND CONCLUSION:The results of cell counting kit-8 experiment showed that the optimal intervention concentration of H2O2 was 400 μmol/L and the optimal intervention concentration of melatonin was 5 μmol/L.The reactive oxygen species level in the melatonin group was significantly lower than that in the model group.The average fluorescence intensity of BAX and Caspase3 in the melatonin group was significantly lower than that in the model group.The mRNA expressions of BAX and Caspase3 in the melatonin group were lower than those in the model group,while the mRNA expression of Bcl-2 was increased.In addition,the mRNA expressions of PI3K and AKT were also higher in the melatonin group compared with the model group.To conclude,melatonin may protect human nucleus pulposus cells from H2O2-induced oxidative damage through the PI3K/AKT signaling pathway.
RESUMO
Objective To investigate the effect and mechanism of osteopontin(OPN)in hepatoma cell migration through galectin-3 binding protein(LGALS3BP).Methods Human hepatoma cell lines SMMC-7721,SMMC-P(stably transfected with empty eukaryotic expression vectors),and SMMC-OPN(stably transfected with the OPN gene)were cultured.mRNA expression levels of OPN and LGALS3BP were measured by RT-qPCR.Western blot assays were used to analyze the relative protein expression of OPN and LGALS3BP and PI3K/AKT pathway.Wound healing assays were performed to explore the cell migration ability.After transfection with LGALS3BP-targeting small interfering RNA(si-LGALS3BP)or negative control small RNA(si-NC)into SMMC-OPN cells,cell migration and relative expression of PI3K/AKT pathway-related proteins were assessed.Results Compared with SMMC-7721 and SMMC-P,the migratory ability of SMMC-OPN cells was significantly reinforced,and expression of LGALS3BP was obviously upregulated at both mRNA and protein levels.Moreover,relative expression of p-PI3K/PI3K and p-AKT/AKT proteins was significantly increased.Wound healing assays showed that the si-LGALS3BP obviously suppressed the migratory ability of SMMC-OPN cells.Furthermore,relative expression of p-PI3K/PI3K and p-AKT/AKT proteins in SMMC-OPN cells was significantly decreased after transfection of si-LGALS3BP.Conclusions OPN activates the PI3K/AKT pathway by upregulating LGALS3BP expression to promote hepatoma cell migration.
RESUMO
AIM: To investigate the protective effect of eugenol against Fusarium solani(F.solani)-induced fungal keratitis(FK)in mice and to preliminarily explore possible underlying mechanisms.METHODS: A modified epifluorescence microscopy method was used to prepare the FK mouse model. An equal amount of DMSO(0.05%)was applied to the conjunctiva of the right eye of rats in the dimethyl sulfoxide(DMSO)group. The eugenol group was prepared by applying eugenol(160 μg/mL)to the conjunctival sac of the right eye of mice. The insulin-like growth factor-1(IGF-1)group was coated with the PI3K/AKT pathway activator IGF-1(10 nmol/mL)in the conjunctival sac of the right eye in addition to the administration of eugenol. The corneal morphology was observed under a slit-lamp microscope on days 1, 3, and 5 of inoculation with F.solani suspension, respectively. Hematoxylin eosin(HE)staining was used to assess corneal histopathological damage. The bacterial load of corneal tissue was determined. Enzyme-linked immunosorbent assay and Western blot were used to analyze the levels of inflammatory mediators interleukin-6(IL-6)and interleukin-1β(IL-1β)and the expression of PI3K/AKT pathway proteins.RESULTS: Eugenol treatment improved the morphological symptoms of keratitis and inflammatory response in FK mice, and reduced corneal pathologic tissue damage and fungal load. At 3 d after F.solani infection, corneal tissue IL-6 levels were significantly higher and IL-1β levels were significantly lower in the eugenol group compared with the DMSO group(both P<0.05); corneal tissue IL-6 levels were significantly higher and IL-1β levels were significantly lower in the eugenol group than in the IGF-1 group(both P<0.05). At 5 d after infection, both IL-6 and IL-1β levels in corneal tissue of the eugenol group were significantly lower than those of the DMSO and IGF-1 groups(P<0.05); compared with the DMSO group, the expression of p-PI3K and p-Akt in the corneal tissues of the eugenol group was significantly reduced(P<0.05); the expression of p-PI3K and p-Akt in corneal tissues was significantly lower in the eugenol group than that of the IGF-1 group(both P<0.05).CONCLUSION: Eugenol may attenuate F.solani-induced corneal inflammation by inhibiting the PI3K/AKT pathway, and it has a protective effect against F.solani keratitis in mice.
RESUMO
OBJECTIVE@#To investigate the growth-inhibitory and pro-apoptotic effects of piroctone olamine (PO) on glioma cells and explore the underlying mechanism.@*METHODS@#Human glioma cell lines U251 and U373 were treated with PO and the changes in cell proliferation were detected using CCK-8 assay and EdU assay. Clone formation assay and flow cytometry were used to examine the changes in clone formation ability and apoptosis of the treated cells. Mitochondrial membrane potential of the cells and morphological changes of the mitochondria were detected using JC-1 staining and a fluorescence probe, respectively. The expressions of mitochondrial fission protein DRP1 and the fusion protein OPA1 were determined with Western blotting. Transcriptome sequencing and differential gene enrichment analysis was performed, and the expression levels of PI3K, AKT and p-AKT in the treated cells were verified using Western blotting.@*RESULTS@#CCK-8 assay showed that PO significantly inhibited the proliferation of U251 and U373 cells in a time- and dose-dependent manner (P < 0.001). EdU test showed that the proliferative activity of PO-treated cells was significantly decreased, and the number of cell colonies also decreased significantly (P < 0.01). PO treatment significantly increased apoptotic rates (P < 0.01), decreased mitochondrial membrane potential and caused obvious changes in mitochondrial morphology of the cells. Pathway enrichment analysis showed that the down-regulated genes were significantly enriched in the PI3K/AKT pathway, which was verified by Western blotting showing significantly down-regulated expression levels of PI3K, AKT and p-AKT in PO-treated cells (P < 0.05).@*CONCLUSION@#PO interferes with mitochondrial fusion and fission function through the PI3K/AKT pathway, thereby inhibiting the proliferation and increasing apoptosis of glioma cells.
Assuntos
Humanos , Glioma , Dinâmica Mitocondrial , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-aktRESUMO
Objective: To investigate the therapeutic effect and mechanism of Liangge Powder against sepsis-induced acute lung injury (ALI) . Methods: From April to December 2021, the key components of Liangge Powder and its targets against sepsis-induced ALI were analyzed by network pharmacology, and to enrich for relevant signaling pathways. A total of 90 male Sprague-Dawley rats were randomly assigned to sham-operated group, sepsis-induced ALI model group (model group), Liangge Powder low, medium and high dose group, ten rats in the sham-operated group and 20 rats in each of the remaining four groups. Sepsis-induced ALI model was established by cecal ligation and puncture. Sham-operated group: gavage with 2 ml saline and no surgical treatment. Model group: surgery was performed and 2 ml saline was gavaged. Liangge Powder low, medium and high dose groups: surgery and gavage of Liangge Powder 3.9, 7.8 and 15.6 g/kg, respectively. To measure the wet/dry mass ratio of rats lung tissue and evaluate the permeability of alveolar capillary barrier. Lung tissue were stained with hematoxylin and eosin for histomorphological analysis. The levels of tumor necrosis factor-alpha (TNF-α), interleukin (IL) -6 and IL-1β in bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay. The relative protein expression levels of p-phosphatidylinositol 3-kinase (PI3K), p-protein kinase B (AKT), and p-ertracellular regulated protein kinases (ERK) were detected via Western blot analysis. Results: Network pharmacology analysis indicated that 177 active compounds of Liangge Powder were selected. A total of 88 potential targets of Liangge Powder on sepsis-induced ALI were identified. 354 GO terms of Liangge Powder on sepsis-induced ALI and 108 pathways were identified using GO and KEGG analysis. PI3K/AKT signaling pathway was recognized to play an important role for Liangge Powder against sepsis-induced ALI. Compared with the sham-operated group, the lung tissue wet/dry weight ratio of rats in the model group (6.35±0.95) was increased (P<0.001). HE staining showed the destruction of normal structure of lung tissue. The levels of IL-6 [ (392.36±66.83) pg/ml], IL-1β [ (137.11±26.83) pg/ml] and TNF-α [ (238.34±59.36) pg/ml] were increased in the BALF (P<0.001, =0.001, <0.001), and the expression levels of p-PI3K, p-AKT and p-ERK1/2 proteins (1.04±0.15, 0.51±0.04, 2.31±0.41) were increased in lung tissue (P=0.002, 0.003, 0.005). The lung histopathological changes were reduced in each dose group of Liangge Powder compared with the model group. Compared with the model group, the wet/dry weight ratio of lung tissue (4.29±1.26) was reduced in the Liangge Powder medium dose group (P=0.019). TNF-α level [ (147.85±39.05) pg/ml] was reduced (P=0.022), and the relative protein expression levels of p-PI3K (0.37±0.18) and p-ERK1/2 (1.36±0.07) were reduced (P=0.008, 0.017). The wet/dry weight ratio of lung tissue (4.16±0.66) was reduced in the high-dose group (P=0.003). Levels of IL-6, IL-1β and TNF-α[ (187.98±53.28) pg/ml, (92.45±25.39) pg/ml, (129.77±55.94) pg/ml] were reduced (P=0.001, 0.027, 0.018), and relative protein expression levels of p-PI3K, p-AKT and p-ERK1/2 (0.65±0.05, 0.31±0.08, 1.30±0.12) were reduced (P=0.013, 0.018, 0.015) . Conclusion: Liangge Powder has therapeutic effects in rats with sepsis-induced ALI, and the mechanism may be related to the inhibition of ERK1/2 and PI3K/AKT pathway activation in lung tissue.
Assuntos
Masculino , Animais , Ratos , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Pós , Experimentação Animal , Interleucina-6 , Sistema de Sinalização das MAP Quinases , Farmacologia em Rede , Fator de Necrose Tumoral alfa , Lesão Pulmonar Aguda/tratamento farmacológico , Sepse/tratamento farmacológicoRESUMO
This study aimed to explore the effects and mechanisms of total flavones of Abelmoschus manihot(TFA), the extracts from traditional Chinese medicine indicated for kidney diseases, on insulin resistance(IR) and podocyte epithelial-mesenchymal transition(EMT) in diabetic kidney disease(DKD), and further to reveal the scientific connotation. Thirty-two rats were randomly divided into a normal group, a model group, a TFA group, and a rosiglitazone(ROS) group. The modified DKD model was induced in rats by methods including high-fat diet feeding, unilateral nephrectomy, and streptozotocin(STZ) intraperitoneal injection. After modeling, the rats in the four groups were given double-distilled water, TFA suspension, and ROS suspension correspondingly by gavage every day. At the end of the 8th week of drug administration, all rats were sacrificed, and the samples of urine, blood, and kidney tissues were collected. The parameters and indicators related to IR and podocyte EMT in the DKD model rats were examined and observed, including the general condition, body weight(BW) and kidney weight(KW), the biochemical parameters and IR indicators, the protein expression levels of the key signaling molecules and structural molecules of slit diaphragm in the renal insulin receptor substrate(IRS) 1/phosphatidylinositol 3-kinase(PI3K)/serine-threonine kinase(Akt) pathway, foot process form and glomerular basement membrane(GBM) thickness, the expression of the marked molecules and structural molecules of slit diaphragm in podocyte EMT, and glomerular histomorphological characteristics. The results showed that for the DKD model rats, both TFA and ROS could improve the general condition, some biochemical parameters, renal appearance, and KW. The ameliorative effects of TFA and ROS were equivalent on BW, urinary albumin(UAlb)/urinary creatinine(UCr), serum creatinine(Scr), triglyceride(TG), and KW. Secondly, they could both improve IR indicators, and ROS was superior to TFA in improving fast insulin(FIN) and homeostasis model assessment of insulin resistance(HOMA-IR). Thirdly, they could both improve the protein expression levels of the key signaling molecules in the IRS1/PI3K/Akt pathway and glomerulosclerosis in varying degrees, and their ameliorative effects were similar. Finally, both could improve podocyte injury and EMT, and TFA was superior to ROS. In conclusion, this study suggested that podocyte EMT and glomerulosclerosis could be induced by IR and the decreased activation of the IRS1/PI3K/Akt pathway in the kidney in DKD. Similar to ROS, the effects of TFA in inhibiting podocyte EMT in DKD were related to inducing the activation of the IRS1/PI3K/Akt pathway and improving IR, which could be one of the scientific connotations of TFA against DKD. This study provides preliminary pharmacological evidence for the development and application of TFA in the field of diabetic complications.
Assuntos
Ratos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Abelmoschus/química , Podócitos , Ratos Sprague-Dawley , Transição Epitelial-Mesenquimal , Flavonas/farmacologia , Resistência à Insulina , Espécies Reativas de Oxigênio , Diabetes MellitusRESUMO
Via network pharmacology, molecular docking, and cellular experiment, this study explored and validated the potential molecular mechanism of ginsenoside Rg_1(Rg_1) against radiation enteritis. Targets of Rg_1 and radiation enteritis were retrieved from BATMAN-TCM, SwissTargetPrediction, and GeneCards. Cytoscape 3.7.2 and STRING were employed for the construction of protein-protein interaction(PPI) network for the common targets, and screening of core targets. DAVID was used for Gene Ontology(GO) term and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment to predict the possible mechanism, followed by molecular docking of Rg_1 with core targets and cellular experiment. For the cellular experiment, ~(60)Co-γ irradiation was performed for mo-deling of IEC-6 cells, which were then treated with Rg_1, protein kinase B(AKT) inhibitor LY294002, and other drugs to verify the effect and mechanism of Rg_1. The results showed that 29 potential targets of Rg_1, 4 941 disease targets, and 25 common targets were screened out. According to the PPI network, the core targets were AKT1, vascular endothelial growth factor A(VEGFA), heat shock protein 90 alpha family class A member 1(HSP90AA1), Bcl-2-like protein 1(BCL2L1), estrogen receptor 1(ESR1), etc. The common targets were mainly involved in the GO terms such as positive regulation of RNA polymerase Ⅱ promoter transcription, signal transduction, positive regulation of cell proliferation, and other biological processes. The top 10 KEGG pathways included phosphoinositide 3-kinase(PI3K)/AKT pathway, RAS pathway, mitogen-activated protein kinase(MAPK) pathway, Ras-proximate-1(RAP1) pathway, and calcium pathway, etc. Molecular docking showed that Rg_1 had high binding affinity to AKT1, VEGFA, HSP90AA1, and other core targets. Cellular experiment indicated that Rg_1 can effectively improve cell viability and survival, decrease apoptosis after irradiation, promote the expression of AKT1 and B-cell lymphoma-extra large(BCL-XL), and inhibit the expression of the pro-apoptotic protein Bcl-2-associated X protein(BAX). In conclusion, through network pharmacology, molecular docking, and cellular experiment, this study verified the ability of Rg_1 to reduce radiation enteritis injury. The mechanism was that it regulated PI3K/AKT pathway, thereby suppressing apoptosis.
Assuntos
Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Farmacologia em Rede , Ginsenosídeos/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fator A de Crescimento do Endotélio Vascular , Simulação de Acoplamento Molecular , Lesões por Radiação , Medicamentos de Ervas Chinesas/farmacologiaRESUMO
Objective Based on PI3K/Akt signaling pathway,the molecular mechanism of brain protective effect of in vitro cultured Calculus Bovis(ICCB),borneol and their combination on cerebral ischemia-reperfusion model rats was discussed from the perspective of anti-apoptosis.Methods The model of transient middle cerebral artery occlusion(MCAO)was established by modified suture and reperfusion 90 minutes after ischemia.HE staining and Tunel staining were used to observe the pathological injury of brain tissue and the apoptosis of cerebral cortical neurons.The expression levels of PI3K/Akt pathway related proteins were detected by Western blotting and immunohistochemistry.Expression of mRNA was detected by RT-PCR.Results Com-pared with the solvent model group,the pathological injury of brain tissue was reduced and apoptosis of cortical neurons on the ischemic side was inhibited;the expressions of p-PI3K,p-Akt and Bcl-2 protein in the ischemic brain tissue were increased;the expression of Caspase-3,Bax protein and Bax/Bcl-2 were decreased in ICCB group,borneol group and combination group.Conclusion The brain protective effect of ICCB,borneol and their combination is related to activation of PI3K/Akt path-way and inhibition of neuronal apoptosis after cerebral ischemia-reperfusion,so as to play the role of"opening the orifices and waking the mind".
RESUMO
Hepatocellular carcinoma(HCC)is the third leading cause of cancer death worldwide.Ginsenoside Rk3,an important and rare saponin in heat-treated ginseng,is generated from Rg1 and has a smaller mo-lecular weight.However,the anti-HCC efficacy and mechanisms of ginsenoside Rk3 have not yet been characterized.Here,we investigated the mechanism by which ginsenoside Rk3,a tetracyclic triterpenoid rare ginsenoside,inhibits the growth of HCC.We first explored the possible potential targets of Rk3 through network pharmacology.Both in vitro(HepG2 and HCC-LM3 cells)and in vivo(primary liver cancer mice and HCC-LM3 subcutaneous tumor-bearing mice)studies revealed that Rk3 significantly inhibits the proliferation of HCC.Meanwhile,Rk3 blocked the cell cycle in HCC at the G1 phase and induced autophagy and apoptosis in HCC.Further proteomics and siRNA experiments showed that Rk3 regulates the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)pathway to inhibit HCC growth,which was validated by molecular docking and surface plasmon resonance.In conclusion,we report the discovery that ginsenoside Rk3 binds to PI3K/AKT and promotes autophagy and apoptosis in HCC.Our data strongly support the translation of ginsenoside Rk3 into novel PI3K/AKT-targeting ther-apeutics for HCC treatment with low toxic side effects.
RESUMO
Objective:To observe the effects of sacubitril/valsartan (LCZ696) on viral replication and cardiomyocyte apoptosis in mice with coxsackievirus B3 (CVB3)-induced viral myocarditis (VMC) and to analyze the underlying mechanisms.Methods:Forty BALB/c mice were randomly divided into four groups with 10 in each group: Sham, Sham+ LCZ696, VMC, and VMC+ LCZ696 groups. VMC model was established by intraperitoneal injection of 0.1 ml of CVB3 with a concentration of 10 6 TCID 50/ml into BALB/c mice, while the sham intervention was an equal volume of saline. The day of virus injection was defined as day 0. LCZ696 was administered by gavage at a dose of 60 mg/kg every day for seven consecutive days starting from day 1. Mouse survival rates were calculated. Echocardiography was used to evaluate the cardiac function of mice. The level of creatine kinase-MB (CK-MB) was detected by ELISA. Western blot was used to detect the levels of inflammatory cytokines (IL-6, TNF-α), apoptosis-related proteins (caspase-3, cleaved-caspase-3, Bax, Bcl-2), CVB3 surface protein (VP-1) and p-AKT/AKT in the hearts of mice. CVB3 mRNA in mouse hearts was measured by PCR. Inflammatory cell infiltration and cell apoptosis in mouse hearts were observed by HE staining and TUNEL staining, respectively. Results:Compared with the Sham group, the mice in the VMC group had a decreased survival rate and impaired cardiac function ( P<0.05). The levels of CK-MB, IL-6, TNF-α, cleaved-caspase-3/caspase-3, Bax/Bcl-2, VP-1, and CVB3 mRNA in the hearts of VMC mice increased significantly ( P<0.05), accompanied by increased expression of AKT, decreased phosphorylation of AKT ( P<0.05) and increased cell apoptosis. LCZ696 reversed the above changes. It could increase the survival rate, improve the cardiac function ( P<0.05), decrease cardiac inflammation, cell apoptosis and viral replication ( P<0.05), and increase the phosphorylation of AKT ( P<0.05). LCZ696 had no significant effects on the survival rate, cardiac function, myocardial injury, cardiac inflammation, cell apoptosis, viral replication or the expression of PI3K/AKT signaling pathway-related proteins in normal mice. Conclusions:LCZ696 could significantly inhibit cardiomyocyte apoptosis and reduce CVB3 replication in the hearts of VMC mice by regulating the PI3K/AKT pathway, thereby improving mouse cardiac function and survival rate.
RESUMO
Aim To explore the protective effect of proanthocyanidin B2 (PC-B2) on oxidative damage of PC 12 cells induced by hydrogen peroxide (H
RESUMO
Aim To explore the effect of Buyang Huanwu Decoction on cerebral ischemia-reperfusion injury in rats by regulating autophagy through PI3K/AKT pathway. Methods The rats were randomly divided into five groups(n=10): sham operation group(Sham), model group(Model), Buyang Huanwu Decoction group(BYHWD), PI3K inhibitor group(LY294002)and Vehicle group(Vehicle). Except Sham group, the other groups were treated with 2h ischemia and 72 h reperfusion for modeling. The Zea Longa score was used to assess the neurological defects, HE was used to observe brain injury in the ischemic penumbra(IP), immunofluorescence was employed to detect LC3, and Western blot was used to detect pathway and autophagy marker proteins. Results Compared BYHWD group with model group, the neurological score of rats decreased, cerebral infarction volume decreased, the pathological lesions of brain IP were relieved, PI3K and p-AKT/AKT expression increased, and LC3Ⅱ/ decreased and p62 increased(P<0.05). The regulatory effect of BYHWD was weakened by LY294002(P<0.05). Conclusion Buyang Huanwu Decoction alleviates cerebral ischemia-reperfusion injury in rats by activating PI3K/AKT pathway to inhibit autophagy.
RESUMO
OBJECTIVE@#To investigate the effect of long non-coding RNA LINC01268 on apoptosis of acute myeloid leukemia (AML) cells and related mechanisms.@*METHODS@#The expression levels of LINC01268 and miR-217 in peripheral blood samples from AML patients and AML cell lines HL-60 and KG-1 were detected by qRT-PCR. HL-60 cells were divided into pcDNA3.1-NC, pcDNA3.1-LINC01268, si-NC, si-LINC01268, miR-NC, miR-217 mimics, si-LINC01268 + inhibitor-NC and si-LINC01268+ miR-217 inhibitor groups. The mRNA expressions of LINC01268 and miR-217 were detected by qRT-PCR. The targeting relationship between LINC01268 and miR-217 was detected by dual-luciferase reporter assay. Cell viability was detected by CCK-8 assay. Cell cycle distribution and apoptosis were detected by flow cytometry. The expression of cell cycle and apoptosis-related proteins p21, Bcl-2, Bax, caspase-3 and PI3K/AKT signaling pathway-related proteins were detected by Western blot.@*RESULTS@#The expression of LINC01268 in peripheral blood samples of AML patients and AML cell lines HL-60 and KG-1 was increased (P < 0.05), and the expression of miR-217 was decreased (P < 0.05). Compared with si-NC group and miR-NC group, the viability of HL-60 cells was decreased in si-LINC01268 group and miR-217 mimics group (P < 0.05), the proportion of cells in G1 phase and apoptosis rate were increased (P < 0.05), the protein expression levels of p21, Bax and caspase-3 were increased (P < 0.05), while the protein expression level of Bcl-2 was decreased (P < 0.05). LINC01268 targeted and negatively regulated the expression of miR-217, and inhibiting the expression of miR-217 partially reversed the effects of LINC01268 interference on the viability, cell cycle and apoptosis of HL-60 cells. Interference with LINC01268 could inhibit the activity of PI3K/AKT signaling pathway. Inhibiting the expression of miR-217 could partially reverse the inhibition of LINC01268 interference on PI3K/AKT signaling pathway.@*CONCLUSION@#LINC01268 is highly expressed and miR-217 is lowly expressed in AML cells. LINC01268 can promote the activity of PI3K/AKT signaling pathway, increase the survival rate and inhibit the apoptosis of AML cells by targeting miR-217 expression.
Assuntos
Humanos , Apoptose , Proteína X Associada a bcl-2/metabolismo , Caspase 3 , Linhagem Celular Tumoral , Proliferação de Células , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genéticaRESUMO
This study aims to investigate the molecular mechanism of tanshinone Ⅱ_(A )(TaⅡ_A) combined with endothelial progenitor cells-derived exosomes(EPCs-exos) in protecting the aortic vascular endothelial cells(AVECs) from oxidative damage via the phosphatidylinositol 3 kinase(PI3K)/protein kinase B(Akt) pathway. The AVECs induced by 1-palmitoyl-2-(5'-oxovaleroyl)-sn-glycero-3-phosphocholine(POVPC) were randomly divided into model, TaⅡ_A, EPCs-exos, and TaⅡ_A+EPCs-exos groups, and the normal cells were taken as the control group. The cell counting kit-8(CCK-8) was used to examine the cell proliferation. The lactate dehydrogenase(LDH) cytotoxicity assay kit, Matrigel assay, DCFH-DA fluorescent probe, and laser confocal microscopy were employed to examine the LDH release, tube-forming ability, cellular reactive oxygen species(ROS) level, and endothelial cell skeleton morphology, respectively. The enzyme-linked immunosorbent assay was employed to measure the expression of interleukin(IL)-1β, IL-6, and tumor necrosis factor(TNF)-α. Real-time fluorescence quantitative PCR(qRT-PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of PI3K and Akt. Compared with the control group, the model group showed decreased cell proliferation and tube-forming ability, increased LDH release, elevated ROS level, obvious cytoskeletal disruption, increased expression of IL-1β, IL-6, and TNF-α, and down-regulated mRNA and protein levels of PI3K and Akt. Compared with the model group, TaⅡ_A or EPCs-exos alone increased the cell proliferation and tube-forming ability, reduced LDH release, lowered the ROS level, repaired the damaged skeleton, decreased the expression of IL-1β, IL-6, and TNF-α, and up-regulated the mRNA and protein levels of PI3K and Akt. TaⅡ_A+EPCs-exos outperformed TaⅡ_A or EPCs-exos alone in regulating the above indexes. The results demonstrated that TaⅡ_A and EPCs-exos exerted a protective effect on POVPC-induced AVECs by activating the PI3K/Akt pathway, and the combination of the two had stronger therapeutic effect.
Assuntos
Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Endotélio Vascular , Estresse Oxidativo , Células Progenitoras Endoteliais , RNA Mensageiro/metabolismo , AbietanosRESUMO
Objective:To investigate the mechanism by which glycoprotein non-transferable melanin B(GPNMB)regulates microglia M2 polarization to reduce nerve damage after cerebral ischemic stroke(CIS).Methods:SD rats were used for establishment of middle cerebral artery occlusion(MCAO)model.Neurons,astrocytes and microglia were cultured under oxygen and glucose depri-vation(OGD)conditions,and the expression of GPNMB in tissues and cells were measured by Western blot.Gpnmb wrapped with adeno-associated virus(AAV)or shRNA-Gpnmb were injected into rat brain tissues for overexpression or inhibition of GPNMB,modified neurological deficit score(mNSS),Rotarod fatigue test and tape removal test were used to evaluate rat nerve function,the proportion of cerebral infarction was determined by TTC staining,microglia M1/M2 polarization markers were detected by immunofluorescence and RT-PCR,and the expression of Phosphatidylinositol 3-kinase(PI3K)/Serine/threonine kinase(Akt)pathway was determined by Western blot.Microglia was cultured under OGD conditions in vitro,Gpnmb was overexpressed and PI3K expression were inhibited by LY294002,and M1/M2 polarization markers were measured.Results:Compared with normal rats or normal cultured cells,the expres-sion of GPNMB in MCAO model or OGD-intervened microglia was up-regulated(P<0.05);when Gpnmb was overexpressed in the brain tissue of MCAO rats,the mNSS score decreased,the Rotarod time of latency to fall lengthened,the contact time and removal time shortened in the tape removal test,the proportion of cerebral infarction decreased,the M1 polarization level of microglia decreased while the M2 polarization level increased,PI3K/Akt pathway activated,and these difference were statistically significant(P<0.05);inhibition of PI3K reversed the effect of overexpression of Gpnmb on promoting M2 polarization of microglia in vitro(P<0.05).Conclusion:GPNMB promotes M2 polarization of microglia by activating the PI3K/Akt pathway,thereby reducing nerve damage after CIS.
RESUMO
OBJECTIVE To investigate the effect and mechanism of anwulignan on improving hepatic fibrosis in rats. METHODS Fifty SD rats were randomly divided into the normal group, model group, colchicine tablet group (0.1 mg/kg), and anwulignan high-dose and low-dose groups (2.8 and 0.7 mg/kg), with 10 rats in each group. Except for the normal group, all groups of rats were intraperitoneally injected with 50% CCl4 olive oil mixed solution to replicate the rat model of liver fibrosis. At the end of the modeling, rats in each group were given the corresponding drugs or distilled water intragastrically from the 9th week, once a day, for 4 weeks consecutively. During the experimental period, the general condition of the rats was observed; the liver index was calculated; the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), superoxide dismutase (SOD) and malondialdehyde (MDA) were detected by colorimetric assay; the pathomorphology of the liver tissues and liver fibrosis were observed by HE staining and Masson staining; Western blot was used to detect the expression levels of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway and apoptosis-related proteins in liver tissues. RESULTS Compared with the normal group, the dietary amount of rats in the model group decreased, with sparse and disheveled fur, slow response, and a slower rate of weight growth or weight loss; the liver index was significantly increased (P<0.01); the serum levels of ALT, AST and MDA were significantly increased, and the SOD level was significantly decreased (P<0.01); HE and Masson staining showed that a large amount of fibrous proliferation was present in the liver tissues of the rats, and the collagen volume fraction was significantly increased (P<0.01); the protein expressions of PI3K, Akt, phosphorylated Akt and B-cell lymphoma (Bcl-2) were down-regulated significantly, while the protein expression of Bcl-2-associated X protein was increased significantly (P<0.01). Compared with the model group, the above indexes of the anwulignan high-dose and low-dose groups and the colchicine tablets group were all reversed significantly. CONCLUSIONS Anwulignan may reduce oxidative stress and inhibit hepatocyte apoptosis by activating the PI3K/Akt signaling pathway, and play the role of anti-hepatic fibrosis.
RESUMO
Objective:To evaluate the effect of gabapentin on myocardial ischemia-reperfusion injury and its mechanism.Methods:Sixty male clean SD rats, aged 10 weeks and weighing 250 g~300 g, were divided into 5 groups ( n=12) with 12 rats in each group by random number table method: Sham group, myocardial ischemia reperfusion group (group I/R), gabapentin group (group Gap), LY294002 group (group LY) and gabapentin +LY294002 group (group Gap +LY). The model of myocardial ischemia reperfusion injury was established by ligation of the left anterior descending coronary artery for 30 min and reperfusion for 120 min. Heart rate (HR), mean arterial pressure (MAP) and the rate pressure product (RPP) were recorded at baseline before ischemia (T 0) for 30 min (T 1) and reperfusion for 120 min (T 2) to evaluate hemodynamic changes during ischemia and reperfusion; The frequency of PVCs and VT/VF were recorded to evaluate the occurrence of arrhythmias during ischemia/reperfusion. TTC staining was used to detect myocardial infarction area. And the protein expression levels of PI3K and Akt in myocardial tissue were detected by Western blotting. Results:Compared with group I/R, the myocardial infarction area, PVCs and VT/VF times, and the protein expression levels of PI3K and p-Akt were significantly increased in group Gap ( P<0.05). Compared with group Gap, the area of myocardial infarction, the number of PVCs and VT/VF, and the protein expression of PI3K and p-Akt were significantly decreased in the group Gap +LY ( P<0.05). Conclusions:Gabapentin can alleviate myocardial ischemia-reperfusion injury, and its mechanism is related to the activation of PI3K-AKT signaling pathway.
RESUMO
ObjectiveTo explore the mechanism of Shenxiong glucose injection (SGI) in inhibiting hydrogen peroxide (H2O2)-induced oxidative damage in H9c2 cells by tandem mass tags (TMT)-labeled quantitative proteomics. MethodH9c2 cells cultured in vitro were exposed to H2O2 for inducing oxidative damage. The cell viability was measured by cell proliferation and cytotoxicity assay (MTS), followed by peptide fractionation by high performance liquid chromatography (HPLC) and protein expression detection in H9c2 cells by ultrahigh performance liquid chromatography-mass spectrometry. MaxQuant (v1.5.2.8) was utilized for data retrieval, and the high-resolution mass spectrometry was conducted to screen out differentially expressed proteins, which were then subjected to gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis. The protein expression levels of perilipin 2 (Plin2) and tropomyosin 1 (Tpm1) in cells were measured by Western blot. ResultThe spectral analysis yielded 48 608 specific peptide fragments and 5 903 quantifiable proteins. Compared with the model group,the SGI group exhibited 82 differentially expressed proteins,of which 22 were up-regulated and 60 were down-regulated. GO analysis results showed that the differentially expressed proteins were mainly involved in biological processes such as programmed cell death regulation,regulation of cell proliferation,cardiovascular system development, and cell migration. As revealed by KEGG analysis, these proteins were mainly related to peroxisome proliferator-activated receptor (PPAR),focal adhesion,phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt),and Ras-related protein 1 (Rap1) pathways. Western blot results demonstrated that compared with the model group,SGI significantly increased the Plin2 protein expression and decreased the Tpm1 protein expression (P<0.01),consistent with the proteomics results. ConclusionSGI may inhibit cell apoptosis and antagonize H2O2-induced cell oxidative damage by regulating PPAR,focal adhesion,PI3K/Akt and Rap1 pathways,which should be further verified by subsequent experiments.
RESUMO
ObjectiveTo explore the effect and mechanism of Xiaojindan extract (XJD) on macrophage polarization. MethodLipopolysaccharide (LPS) and interleukin-4 (IL-4) were used to induce M1 and M2 polarization of RAW264.7 cells. The influence of 10-80 mg·L-1 XJD on cell proliferation was detected by Cell Counting Kit-8 (CCK-8) assay. Nitric oxide (NO) and interleukin-6 (IL-6) release was explored by Griess assay and enzyme-linked immunosorbent assay (ELISA), respectively. The mRNA expression of M1 and M2 macrophage markers was measured by real-time quantitative polymerase chain reaction (Real-time PCR), and the CD206+ expression was determined by flow cytometry. The activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway was analyzed by western blot. Result10-80 mg·L-1 XJD showed no marked cytotoxicity in LPS (0.5 mg·L-1)- or IL-4 (20 μg·L-1)-induced RAW264.7 cells. Compared with the control group, LPS significantly promoted the expression of M1 macrophage markers (P<0.01), including increased NO and IL-6 release (P<0.01) and upregulated mRNA expression of interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) (P<0.01). Compared with LPS-induced group, 20-80 mg·L-1 XJD decreased the release of NO and IL-6 in a dose-dependent manner (P<0.01), and similarly 10-80 mg·L-1 XJD suppressed the mRNA expression of IL-1β, iNOS, COX-2 and TNF-α (P<0.01). Compared with the control group, IL-4 obviously increased the expression of M2 macrophage markers (P<0.01), including increased CD206+ cell population and upregulated mRNA expression of arginine-1 (Arg-1), interleukin-10 (IL-10), interleukin-13 (IL-13) and transforming growth factor-β1 (TGF-β1). Compared with IL-4-induced group, 10-80 mg·L-1 XJD dose-dependently decreased CD206+ cell population (P<0.01) and inhibited the mRNA expression of Arg-1, IL-10, IL-13 and TGF-β1 (P<0.01). Western blot showed that XJD significantly downregulated the activation of PI3K/Akt pathway as compared to LPS- and IL-4-induced groups (P<0.05, P<0.01). ConclusionXJD significantly inhibited the macrophage polarization in the LPS- and IL-4-induced RAW264.7 cells by targeting PI3K/Akt pathway.
RESUMO
Aim To preliminarily investigate the effect of brusatol(BRU), the monomer components fromChinese medicines on H1299 cells and its mechanisms.Methods CCK-8 and EdU staining experiment were used to detect the effect of BRU on cell prolifera-tion.Clone formation experiment was performed to measure the effect of drugs on cell clone formation.Hoechst33258 staining experiment and flow cytometry were employed to observe the cell apoptosis.Western blot assay was used to detect the protein expression levels of Bcl-xL, Bax, Bcl-2, cleaved-caspase-3, caspase-3, Gadd45α, PI3K, p-PI3K, Akt, p-Akt and NF-κB-p65.Results CCK-8 assay revealed that the inhibitory effect of H1299 cells gradually increased with the rising of BRU concentration and action time.Compared with control group, the EdU incorporation rate of the BRU treatment group decreased significantly.Treated with different concentrations of BRU for 24 h, the clone formation rate was significantly reduced in a concentration-dependent manner.Hoechst33258 experiment and flow cytometry showed that BRU could induce apoptosis in H1299 cell nucleus and increase its apoptotic rate.Western blot results revealed that BRU could significantly up-regulate the protein levels of Bax, cleaved-caspase-3, Gadd45α, and significantly down-regulate the expression of Bcl-xL, Bcl-2, caspase-3.In addition, BRU could significantly decrease the expression level of p-PI3K, p-Akt, NF-κB-p65 in cell nucleus.Conclusions BRU can inhibit the proliferation and induce apoptosis of H1299 cells in a concentration and time-dependent manner.The mechanism may be related to the inhibition of PI3K/Akt signaling pathway and the nuclear shuttle of NF-κB-p65.