Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. arch. biol. technol ; 64: e21200132, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1153298

RESUMO

HIGHLIGHTS Arsenic is considered as one of the highly hazardous elements in the environment and a serious carcinogen for the human health. An enzymatic method has been described by using arsenite oxidase for arsenic detection. Residual activity of the immobilized enzyme was 43% of the initial activity after being recycled 10 times.


Abstract Arsenic is considered as one of the highly hazardous elements in the environment and a serious carcinogen for the human health. More attention has taken towards the arsenic due to its presence in ground water in India, China, Bangladesh, Inner Mongolia and several other regions of the world. It's been a challenge to remove arsenic due to the lack of its efficient detection approach in the complicated environmental matrix. The proposed method describes an enzymatic method for arsenic determination using arsenite oxidase, which catalyzes the oxidation of arsenite to arsenate. Hence, a colorimetric PVC strip with immobilized arsenite oxidase has been developed to detect the arsenic concentration and also having potential for the field-testing. The influence of the optimal conditions i.e. pH, temperature, storage stability, and reusability of free and immobilized enzyme were evaluated and compared. The results have shown that the stabilities were significantly enhanced compared with free counterpart. Residual activity of the immobilized enzyme was 43% of the initial activity after being recycled 10 times. We approve that this novel low cost immobilized carrier presents a new approach in large scale applications and expected to act as a model for establishment of indigenous arsenic sensor in miniature form.


Assuntos
Humanos , Arsênio/análise , Cloreto de Polivinila/análise , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Enzimas Imobilizadas/análise , Oxirredutases , Biodegradação Ambiental
2.
Artigo em Inglês | IMSEAR | ID: sea-155211

RESUMO

Background & objectives: Reusable biostrip consisting enzymes immobilized onto alkylamine glass beads affixed on plasticized PVC strip for determination of triglyceride (TG) suffers from high cost of beads and their detachments during washings for reuse, leading to loss of activity. The purpose of this study was to develop a cheaper and stable biostrip for investigation of TG levels in serum. Methods: A reusable enzyme-strip was prepared for TG determination by co-immobilizing lipase, glycerol kinase (GK), glycerol-3-phosphate oxidase (GPO) and peroxidase (HRP) directly onto plasticized polyvinyl chloride (PVC) strip through glutaraldehyde coupling. The method was evaluated by studying its recovery, precision and reusability. Results: The enzyme-strip showed optimum activity at pH 7.0, 35oC and a linear relationship between its activity and triolein concentration in the range 0.1 to 15 mM. The strip was used for determination of serum TG. The detection limit of the method was 0.1 mM. Analytical recovery of added triolein was 96 per cent. Within and between batch coefficients of variation (CV) were 2.2 and 3.7 per cent, respectively. A good correlation (r=0.99) was found between TG values by standard enzymic colrimetric method employing free enzymes and the present method. The strip lost 50 per cent of its initial activity after its 200 uses during the span of 100 days, when stored at 4oC. Interpretation & conclusions: The nitrating acidic treatment of plasticized PVC strip led to glutaraldehyde coupling of four enzymes used for enzymic colourimetric determination of serum TG. The strip provided 200 reuses of enzymes with only 50 per cent loss of its initial activity. The method could be used for preparation of other enzyme strips also.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA