Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.185
Filtrar
1.
Arch. argent. pediatr ; 122(1): e202303001, feb. 2024. tab, graf
Artigo em Inglês, Espanhol | LILACS, BINACIS | ID: biblio-1524312

RESUMO

Introducción. Con el uso de la nutrición parenteral agresiva en recién nacidos de muy bajo peso, se detectaron alteraciones del metabolismo fosfocálcico. En 2016 se implementó una estrategia de prevención a través del monitoreo fosfocálcico y su suplementación temprana. El objetivo fue estudiar si esta estrategia disminuye la prevalencia de osteopenia e identificar factores de riesgo asociados. Población y métodos. Estudio cuasiexperimental que comparó la prevalencia de osteopenia entre dos grupos: uno después de implementar la estrategia de monitoreo y suplementación fosfocálcica (01/01/2017-31/12/2019), y otro previo a dicha intervención (01/01/2013-31/12/2015). Resultados. Se incluyeron 226 pacientes: 133 pertenecen al período preintervención y 93 al posintervención. La prevalencia de osteopenia global fue del 26,1 % (IC95% 20,5-32,3) y disminuyó del 29,3 % (IC95% 21,7-37,8) en el período preintervención al 21,5 % (IC95% 13,6-31,2) en el posintervención, sin significancia estadística (p = 0,19). En el análisis multivariado, el puntaje NEOCOSUR de riesgo de muerte al nacer, recibir corticoides posnatales y el período de intervención se asociaron de manera independiente a osteopenia. Haber nacido luego de la intervención disminuyó un 71 % la probabilidad de presentar fosfatasa alcalina >500 UI/L independientemente de las restantes variables incluidas en el modelo. Conclusión. La monitorización y suplementación fosfocálcica precoz constituye un factor protector para el desarrollo de osteopenia en recién nacidos con muy bajo peso al nacer.


Introduction. With the use of aggressive parenteral nutrition in very low birth weight infants, alterations in calcium and phosphate metabolism were detected. In 2016, a prevention strategy was implemented through calcium phosphate monitoring and early supplementation. Our objective was to study whether this strategy reduces the prevalence of osteopenia and to identify associated risk factors. Population and methods. Quasi-experiment comparing the prevalence of osteopenia between two groups: one after implementing the calcium phosphate monitoring and supplementation strategy (01/01/2017­12/31/2019) and another prior to such intervention (01/01/2013­12/31/2015). Results. A total of 226 patients were included: 133 in the pre-intervention period and 93 in the post-intervention period. The overall prevalence of osteopenia was 26.1% (95% CI: 20.5­32.3) and it was reduced from 29.3% (95% CI: 21.7­37.8) in the pre-intervention period to 21.5% (95% CI: 13.6­31.2) in the post-intervention period, with no statistical significance (p = 0.19). In the multivariate analysis, the NEOCOSUR score for risk of death at birth, use of postnatal corticosteroids, and the intervention period were independently associated with osteopenia. Being born after the intervention reduced the probability of alkaline phosphatase > 500 IU/L by 71%, regardless of the other variables included in the model. Conclusion. Calcium phosphate monitoring and early supplementation is a protective factor against the development of osteopenia in very low birth weight infants.


Assuntos
Humanos , Recém-Nascido , Doenças Ósseas Metabólicas/prevenção & controle , Doenças Ósseas Metabólicas/epidemiologia , Cálcio , Fosfatos , Fosfatos de Cálcio , Prevalência
2.
Journal of Environmental and Occupational Medicine ; (12): 34-40, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006454

RESUMO

Background Chronic excessive exposure to fluoride can cause damage to the central nervous system and a certain degree of learning and memory impairment. However, the associated mechanism is not yet clear and further exploration is needed. Objective Using 4D unlabelled quantitative proteomics techniques to explore differentially expressed proteins and their potential mechanisms of action in chronic excessive fluoride exposure induced brain injury. Methods Twenty-four SPF-grade adult SD rats, half male and half male, were selected and divided into a control group and a fluoride group by random number table method, with 12 rats in each group. Among them, the control group drank tap water (fluorine content<1 mg·L−1), the fluoride group drank sodium fluoride solution (fluorine content 10 mg·L−1), and both groups were fed with ordinary mouse feed (fluoride content<0.6 mg·kg−1). After 180 d of feeding, the SD rats were weighed, and then part of the brain tissue was sampled for pathological examination by hematoxylin-eosin (HE) staining and Nissl staining. The rest of the brain tissue was frozen and stored at −80 ℃. Three brain tissue samples from each group were randomly selected for proteomics detection. Differentially expressed proteins were screened and subcellular localization analysis was performed, followed by Gene Ontology (GO) function analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, cluster analysis, and protein-protein interaction analysis. Finally, Western blotting was used to detect the expression levels of key proteins extracted from the brain tissue samples. Results After 180 d of feeding, the average weight of the rats in the fluoride group was significantly lower than that in the control group (P<0.05). The brain tissue stained with HE showed no significant morphological changes in the cerebral cortex of the fluoride treated rats, and neuron loss, irregular arrangement of neurons, eosinophilic changes, and cell body pyknosis were observed in the hippocampus. The Nissl staining results showed that the staining of neurons in the cerebral cortex and hippocampus of rats exposed to fluoride decreased (Nissl bodies decreased). The proteomics results showed that a total of 6927 proteins were identified. After screening, 206 differentially expressed proteins were obtained between the control group and the fluoride group, including 96 up-regulated proteins and 110 down-regulated proteins. The differential proteins were mainly located in cytoplasm (30.6%), nucleus (27.2%), mitochondria (13.6%), plasma membrane (13.6%), and extracellular domain (11.7%). The GO analysis results showed that differentially expressed proteins mainly participated in biological processes such as iron ion transport, regulation of dopamine neuron differentiation, and negative regulation of respiratory burst in inflammatory response, exercised molecular functions such as ferrous binding, iron oxidase activity, and cytokine activity, and were located in the smooth endoplasmic reticulum membrane, fixed components of the membrane, chloride channel complexes, and other cellular components. The KEGG significantly enriched pathways included biosynthesis of secondary metabolites, carbon metabolism, and microbial metabolism in diverse environments. The results of differential protein-protein interaction analysis showed that the highest connectivity was found in glucose-6-phosphate isomerase (Gpi). The expression level of Gpi in the brain tissue of the rats in the fluoride group was lower than that in the control group by Western blotting (P<0.05). Conclusion Multiple differentially expressed proteins are present in the brain tissue of rats with chronic fluorosis, and their functions are related to biosynthesis of secondary metabolites, carbon metabolism, and microbial metabolism in diverse environments; Gpi may be involved in cerebral neurological damage caused by chronic overdose fluoride exposure.

3.
Chinese Journal of Biologicals ; (12): 129-137, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1006850

RESUMO

@#Objective To evaluate the stability of polyribosylribitol phosphate(PRP),the basic structure of capsular polysaccharide of Haemophilus influenzae type b(Hib),in the preparation of Hib conjugate vaccine.Methods The structures of the prepared Hib polysaccharides,polysaccharide derivatives and protein-conjugated polysaccharides were analyzed by nuclear magnetic resonance spectroscopy(NMR).Results The detection results of the prepared Hib polysaccharides,polysaccharide derivatives and protein-conjugated polysaccharides all met the requirements of relevant standards of Chinese Pharmacopoeia(VolumeⅢ,2020 edition),and the NMR spectra showed no significant change.Conclusion The basic structure PRP of the main carbohydrate antigen of Hib conjugate vaccine had no change during the vaccine manufacturing.

4.
Odovtos (En línea) ; 25(2)ago. 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1448737

RESUMO

The objective is to determine which biopolymer has the best 3D printing characteristics and mechanical properties for the manufacture of a bioscaffold, using the fused deposition printing technique, with models generated from an STL file obtained from a Micro-CT scan taken from a bovine iliac crest bone structure. Through an experimental exploratory study, three study groups of the analyzed biopolymers were carried out with thirteen printed structures of each one. The first is made of 100% PLA. The second, 90B, we added 1g of diatom extract, and the third, 88C, differs from the previous one in that it also contains 1g of calcium phosphate. The 39 printed structures underwent a visual inspection test, which required the fabrication of a gold standard scaffold in resin, with greater detail and similarity to the scanned bone structure. Finally, the structures were subjected to a compressive force (N) to obtain the modulus of elasticity (MPa) and compressive strength (MPa) of each one of them. A statistically significant difference (p=0.001) was obtained in the printing properties of the biomaterial 88C, compared to 90B and pure PLA and the 88C presented the best 3D printing characteristics. In addition, it also presented the best mechanical properties compared to the other groups of materials. Although the difference between these was not statistically significant (p=0.388), in the structures of the 88C biomaterial, values of compressive strength (8,84692 MPa) and modulus of elasticity (43,23615 MPa) were similar to those of cancellous bone in the jaws could be observed. Because of this result, the 88C biomaterial has the potential to be used in the manufacture of bioscaffolds in tissue engineering.


El objetivo es determinar cuál biopolímero presenta las mejores características de impresión 3D y propiedades mecánicas para la fabricación de un bioandamiaje, utilizando la técnica de impresión por deposición fundida, con modelos generados a partir de un archivo en formato STL que se obtuvo de un Micro-CT Scan de una estructura osea de cresta iliaca bovina. Mediante un estudio exploratorio, se realizaron 3 grupos de estudio con trece estructuras impresas de cada uno. El primero, se compone 100% de PLA. El segundo, 90B, se le agrega 1g de extracto de diatomea, y el tercero, 88C, se diferencia del anterior ya que contiene además, 1g de fosfato de calcio. A las 39 estructuras impresas se les realizó una prueba de inspección visual, por lo que se requirió la confección de un patrón de oro en resina, con mayor detalle y similitud a la estructura ósea escaneada. Finalmente, las estructuras fueron sometidas a una fuerza compresiva (N) para la obtención del módulo de elasticidad (MPa) y de la resistencia compresiva (MPa) de cada una de ellas. Se obtuvo una diferencia estadísticamente significativa (p=0,001) en las propiedades de impresión del biomaterial 88C, con respecto al 90B y al PLA puro, presentando las mejores características de impresión 3D. Además, obtuvo las mejores propiedades mecánicas en comparación con los otros grupos de materiales. Aunque la diferencia entre estos no fue estadísticamente significativa (p=0,388), en las estructuras del biomaterial 88C, se pudieron observar valores de resistencia compresiva (8,84692 MPa) y módulo de elasticidad (43,23615 MPa) que son semejantes a los del hueso esponjoso de los maxilares. A razón de este resultado, el biomaterial 88C cuenta con el potencial para ser utilizado en la fabricación de bioandamiajes en la ingeniería tisular.

5.
Artigo | IMSEAR | ID: sea-219461

RESUMO

The characteristics of two cyanobacterial strains, Anabaena oryzae and Nostoc muscorum, were studied in order to use them as biofertilizers in a field experiment conducted in the two winter seasons of 2021 and 2022 at the Ismailia Agricultural Research Center Station to study the effect of both strains on peanut plant in sandy soil. Cyanobacterial strains were used individually by coating seed, soil drench, and foliar applications, as well as mixed applications of two strains in various ways. Both cyanobacterial strains morphological examination revealed that they both have heterocysts, nitrogen, phosphorus, and potassium in their culture filtrate, and they were able to produce chlorophyll a and phosphatase enzymes. The results of an agricultural experiment showed that using Nostoc muscorum and Anabaena oryzae separately had a positive effect on peanut plants in a variety of applications, but combining both of these applications with 75% nitrogen increased the growth traits, nutrient contents, and soil biological activities in both peanut plants and their rhizosphere soil. The soil drench treatment with A. oryzae and Nostoc muscorum plus 75% nitrogen produced the highest growth results and peanut yields in a single application. The A. oryzae Soil Drench Application (S) + N. muscorum Foliar Application (F) with 75% N reported the best outcomes in mixed treatments. However, compared to single applications, all blended applications displayed better growth and yield characteristics. The results of the study suggest that employing cyanobacteria in a mixed application will enhance its advantages over a single use.

6.
Indian J Pediatr ; 2023 Jun; 90(6): 574–581
Artigo | IMSEAR | ID: sea-223756

RESUMO

Nutritional rickets, caused by vitamin D and/or calcium deficiency is by far the most common cause of rickets. In resource-limited settings, it is therefore not uncommon to treat rickets with vitamin D and calcium. If rickets fails to heal and/or if there is a family history of rickets, then refractory rickets should be considered as a differential diagnosis. Chronic low serum phosphate is the pathological hallmark of all forms of rickets as its low concentration in extracellular space leads to the failure of apoptosis of hypertrophic chondrocytes leading to defective mineralisation of the growth plate. Parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) control serum phosphate concentration by facilitating the excretion of phosphate in the urine through their action on the proximal renal tubules. An increase in PTH, as seen in nutritional rickets and genetic disorders of vitamin D-dependent rickets (VDDRs), leads to chronic low serum phosphate, causing rickets. Genetic conditions leading to an increase in FGF23 concentration cause chronic low serum phosphate concentration and rickets. Genetic conditions and syndromes associated with proximal renal tubulopathies can also lead to chronic low serum phosphate concentration by excess phosphate leak in urine, causing rickets. In this review, authors discuss an approach to the differential diagnosis and management of refractory rickets

7.
Rev. nefrol. diál. traspl ; 43(1): 8-8, mar. 2023.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1515453

RESUMO

RESUMEN El manejo de la hiperfosfatemia de los pacientes con insuficiencia renal crónica en diálisis permanece como un desafío. A pesar de utilizar un enfoque multifacético que incluye la restricción dietética, la remoción de fósforo por la diálisis y el uso de quelantes de fósforo, esta estrategia múltiple no logra reducir los niveles de fósforo en más de 2 mg/dl. El control de fósforo de los pacientes en diálisis es fundamental en razón de la relación monotónica entre los niveles séricos de fosfato y el incremento del riesgo cardiovascular. Por lo tanto, hay una necesidad de explorar nuevas estrategias para reducir los niveles séricos de fosfato a niveles normales. Recientes avances en nuestra compresión de los mecanismos que subyacen a la homeostasis del fósforo sugieren que el transporte gastrointestinal del fósforo podría ser un objetivo. Recientemente se han desarrollado inhibidores de los cotransportadores sodio fosfato del intestino y se ha revalorizado el uso de la nicotinamida, en su formulación de liberación prolongada, que también actuaria por ese mecanismo. También se han drogas como el tenapanor, que inhibiendo el intercambiador sodio/hidrogeno isoforma 3 del enterocito, disminuyen la absorción paracelular de fósforo.


ABSTRACT Management of hyperphosphatemia in patients with chronic renal failure on dialysis remains challenging. Despite using a multifaceted approach that includes dietary restriction, phosphorus removal by dialysis, and phosphate binders, these multiple strategies fail to reduce phosphorus levels by more than 2 mg/dL. Phosphorus control in dialysis patients is essential due to the monotonic relationship between serum phosphate levels and increased cardiovascular risk. Therefore, there is a need to explore new strategies to reduce serum phosphate levels to normal levels. Recent advances in understanding the mechanisms underlying phosphorus homeostasis suggest that the gastrointestinal transport of phosphorus could be a target. Inhibitors of intestinal sodium phosphate cotransporters recently developed, and using of nicotinamide, in its prolonged release formulation, which would also act by this mechanism, has been revalued. There have also been drugs such as tenapanor, which, by inhibiting the isoform three sodium/hydrogen exchanger of the enterocyte, decreases the paracellular absorption of phosphorus.

8.
Arch. cardiol. Méx ; 93(1): 88-95, ene.-mar. 2023. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1429709

RESUMO

Resumen Los esfingolípidos (esfingomielina, glucolípidos y gangliósidos) se localizan en las membranas celulares, el plasma y las lipoproteínas. En pacientes con enfermedades cardiovasculares, renales y metabólicas, el perfil de los esfingolípidos y sus metabolitos (ceramida, esfingosina y esfingosina-1-fosfato) se modifica, y estos cambios pueden explicar las alteraciones en algunas respuestas celulares, como la apoptosis. Además, se ha sugerido que la esfingosina y la esfingosina-1-fosfato previenen la COVID-19. En esta revisión también se mencionan brevemente las técnicas que permiten el estudio de los esfingolípidos y sus metabolitos.


Abstract Sphingolipids (sphingomyelin, glycolipids, gangliosides) are located in cell membranes, plasma, and lipoproteins. In patients with cardiovascular, renal, and metabolic diseases, the profile of sphingolipids and their metabolites (ceramide, sphingosine, and sphingosine-1-phosphate) is modified, and these changes may explain the alterations in some cellular responses such as apoptosis. Furthermore, sphingosine and sphingosine-1-phosphate have been suggested to prevent COVID-19. This review also briefly mentions the techniques that allow us to study sphingolipids and their metabolites.

9.
J. appl. oral sci ; 31: e20220410, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1430626

RESUMO

Abstract Regular use of toothpaste with fluoride (F) concentrations of ≥ 1000 ppm has been shown to contribute to reducing caries increment. However, when used by children during the period of dental development, it can lead to dental fluorosis. Objective: In this study, we aimed to evaluate the in vitro effect of a toothpaste formulation with reduced fluoride (F) concentration (200 ppm) supplemented with sodium trimetaphosphate (TMP: 0.2%), Xylitol (X:16%), and Erythritol (E: 4%) on dental enamel demineralization. Methodology: Bovine enamel blocks were selected according to initial surface hardness (SHi) and then divided into seven experimental toothpaste groups (n=12). These groups included 1) no F-TMP-X-E (Placebo); 2) 16% Xylitol and 4% Erythritol (X-E); 3) 16% Xylitol, 4% Erythritol and 0.2%TMP (X-E-TMP); 4) 200 ppm F (no X-E-TMP: (200F)); 5) 200 ppm F and 0.2% TMP (200F-TMP); 200 ppm F, 16% Xylitol, 4% Erythritol, and 0.2% TMP (200F-X-E-TMP); and 7) 1,100 ppm F (1100F). Blocks were individually treated 2×/day with slurries of toothpastes and subjected to a pH cycling regimen for five days (DES: 6 hours and RE: 18 hours). Then, the percentage of surface hardness loss (%SH), integrated loss of subsurface hardness (ΔKHN), fluoride (F), calcium (Ca), and phosphorus (P) in enamel were determined. The data were analyzed by ANOVA (1-criterion) and the Student-Newman-Keuls test (p<0.001). Results: We found that the 200F-X-E-TMP treatment reduced %SH by 43% compared to the 1100F treatments (p<0.001). The ΔKHN was ~ 65% higher with 200F-X-E-TMP compared to 1100F (p<0.001). The highest concentration of F in enamel was observed on the 1100F treatment (p<0.001). The 200F-X-E-TMP treatment promote higher increase of Ca and P concentration in the enamel (p<0.001). Conclusion: The association of 200F-X-E-TMP led to a significant increase of the protective effect on enamel demineralization compared to the 1100F toothpaste.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 264-273, 2023.
Artigo em Chinês | WPRIM | ID: wpr-996529

RESUMO

Obesity type 2 diabetes mellitus (T2DM) strengthens insulin resistance (IR) and metabolic abnormalities and significantly increases the risk of heart disease, cancer, and other diseases, and it is characterized by IR and malnutrition. As a metabolic regulation center, adenosine phosphate activated protein kinase (AMPK) mainly responds to the changes in intracellular serine/threonine kinase adenosine monophosphate (AMP) levels. After its activation, AMPK converts the cell metabolism mode from synthesis to decomposition to improve energy metabolism and acts on pathological conditions such as inflammation, ischemia, obesity, and aging. In recent years, a large number of studies have found that AMPK is an important target for the treatment of obesity T2DM. Traditional Chinese medicine(TCM) monomers/extracts and TCM formulas mainly affect the mammalian target of rapamycin (mTOR), recombinant sirtuin 1 (SIRT1), nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor kappa-B (NF-κB), and other key signaling factors by regulating the AMPK signaling pathway, so as to achieve a variety of effects such as regulating metabolism and autophagy, reducing oxidative stress and inflammatory response, and treating obesity T2DM. It also has advantages such as multiple targets, comprehensiveness, and low toxicity. The regulation of the AMPK pathway by TCM in the prevention and treatment of obesity T2DM has become an important research direction at the present and in the future, but there is no systematic summary and induction in this field. Therefore, this article attempts to summarize the composition and regulatory mechanisms of the AMPK signaling pathway in affecting obesity. It provides a review of the current research status of TCM in regulating the AMPK signaling pathway for the prevention and treatment of obesity T2DM, so as to provide a reference for the diagnosis and treatment of obesity T2DM in TCM and the development of new drugs.

11.
Chinese Journal of Laboratory Medicine ; (12): 62-67, 2023.
Artigo em Chinês | WPRIM | ID: wpr-995698

RESUMO

Objective:To explore the impact of serum carbamoyl phosphate synthase 1 (CPS1) level on prognosis of patients with hepatitis E-related acute liver failure (HEV-ALF).Methods:This retrospective analysis included 100 HEV-ALF patients, 100 patients with acute hepatitis E (AHE) and 100 healthy controls who admitted or underwent health checkup from December 2018 to June 2019 in six hospitals, including the First Affiliated Hospital, Zhejiang University School of Medicine. HEV-ALF patients were divided into non-survial ( n=21) and survival ( n=79) subgroups according to results of 30-day follow-up results. HEV-ALF patients were also divided into the high ( n=50) and low ( n=50) serum CPS1 level groups. HEV-ALF patients were further divided into the improvement ( n=55), fluctuation ( n=32) and deterioration ( n=13) subgroups. The general clinical data from all participants were collected. Serum CPS1 levels were detected by enzyme linked immunosorbent assay. The survival time in the high and low serum CPS1 level groups were presented in the Kaplan-Meier curve. The correlation between serum CPS1 level and HEV-ALF related conventional parameters was also analyzed by linear regression. The efficacy of serum CPS1 level on predicting the 30-day mortality of HEV-ALF patients was estimated by the receiver operating characteristic curve and area under curve (AUC). Results:Serum CPS1 level was significantly higher in HEV-ALF patients than in AHE patients [958.59 (665.52, 1 105.83) pg/ml vs 549.38 (495.02, 649.08) pg/ml, P<0.001], and serum CPS1 level was significantly higher in AHE patients than in healthy controls [549.38 (495.02, 649.08) pg/ml vs 469.89 (373.32, 564.53) pg/ml, P<0.001]. The level of serum CPS1 was significantly lower in the HEV-ALF survival group than in the HEV-ALF non-survival group [922.6 (652.7, 1, 042.3) pg/ml vs 1 252.8 (933.3, 1 555.8) pg/ml, P<0.001]. In addition, the survival time was shorter in the high serum CPS1 level group than in the low serum CPS1 level group [24.59 (22.11, 27.06) d vs 28.16 (26.25, 30.07) d, P=0.045]. Serum CPS1 levels were increased in the fluctuation and deterioration groups [Fluctuation: 1 328.3 (1 184.3, 1 964.0) pg/ml vs 1 245.7 (1 102.0, 1 937.6) pg/ml, P<0.01; Deterioration: 1 483.6 (1 275.9, 1 656.8) pg/ml vs 1 332.2 (1 197.4, 1 509.8) pg/ml, P<0.01], while decreased in the improvement group [810.3 (599.7, 904.5) pg/ml vs 922.6 (679.5, 1 039.6) pg/ml, P<0.01] over time. Besides, a linear positive correlation was found between serum CPS1 level and alanine aminotransferase (ALT) and total bilirubin (TBIL) (ALT: r=0.339, P<0.001; TBIL: r=0.304, P=0.002). The AUC of serum CPS1 level to predict the 30-day mortality of HEV-ALF patients was 0.803 (95% CI 0.666-0.941), the sensitivity and specificity were 66.67% and 97.47%, respectively. Conclusion:Serum CPS1 level was significantly increased in HEV-ALF patients, and closely related to the prognosis of patients with HEV-ALF.

12.
Cancer Research on Prevention and Treatment ; (12): 622-627, 2023.
Artigo em Chinês | WPRIM | ID: wpr-986241

RESUMO

Metastasis is the main cause of cancer-related death. Growing evidence has shown that changes in glucose metabolism in nasopharyngeal carcinoma cells affect the invasion and metastasis of nasopharyngeal carcinoma through many pathways. This review summarizes the molecular mechanism underlying abnormal glucose metabolism in nasopharyngeal carcinoma cells and analyzes its relationship with the invasion and metastasis of nasopharyngeal carcinoma, including aerobic glycolysis, aerobic oxidation, and pentose phosphate pathway. The aim is to provide novel approaches using the relationships among glucose metabolism, invasion, and metastasis in the targeted therapy of nasopharyngeal carcinoma.

13.
Chinese Journal of Hepatology ; (12): 408-414, 2023.
Artigo em Chinês | WPRIM | ID: wpr-986144

RESUMO

Objective: To investigate the effect of 1-acyl-sn-glycerol-3-phosphate acyltransferaseδ (APGAT4) on the growth and lenvatinib resistance of hepatocellular carcinoma (HCC), and provide novel targets for HCC treatment. Methods: Using the bioinformatics methods to screen out upregulated genes in lenvatinib resistant cell lines from GEO dataset and survival related genes from TCGA dataset. Immumohistochemical staining was used to detect the expression AGPAT4 in HCC tissues, and its correlation with patients' survival. CCK8, EdU, cell cycle, and cell apoptosis assays were used to investigate the impact of role AGPAT4 on the proliferation and lenvatinib reistance of HCC cells. AGPAT4 stable knockdown cell line and subcutaneous nude mouse model were established to test the therapeutic effects of Lenvatinib. Analysis of variance was used to compare the differences between data sets. Results: APGAT4 was the common factor that predicted poor survival and Lenvatinib resistance. The mRNA and protein levels of APGAT4 were significantly upregulated in HCC tissues compared to the para-tumor tissues (P < 0.05). Using siRNA could significantly knocked down the mRNA and protein expression of APGAT4 in HCC cell lines Hep3B and HCCLM3. Compared with the control group, the proliferation ability of HCC cell lines (Hep3B and HCCLM3) in APGAT4 knockdown group was significantly inhibited, and the cell cycle was arrested in G2/M phase (P < 0.05). In addition, compared to the control group, HCC cell lines (Hep3B and HCCLM3) in APGAT4 knockdown group showed significant decrease in the Lenvatinib half maximal inhibitory concentration, and were more sensitive to lenvatinib-induced apoptosis (P < 0.05). In HCC subcutaneous nude mouse model, compared to the control group, the growth of tumor in APGAT4 knockdown group was significantly suppressed, and more apoptosis cells were induced (P < 0.05). Conclusion: APGAT4 promotes the growth and Lenvatinib resistance of HCC, which is a potential target for HCC treatment. Targeting APGAT4 treatment is conducive to inhibit the growth and Lenvatinib resistance of HCC.


Assuntos
Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Camundongos Nus , Linhagem Celular Tumoral , Proliferação de Células , RNA Mensageiro , Regulação Neoplásica da Expressão Gênica
14.
Acta Pharmaceutica Sinica B ; (6): 1110-1127, 2023.
Artigo em Inglês | WPRIM | ID: wpr-971742

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with unclear etiology and limited treatment options. The median survival time for IPF patients is approximately 2-3 years and there is no effective intervention to treat IPF other than lung transplantation. As important components of lung tissue, endothelial cells (ECs) are associated with pulmonary diseases. However, the role of endothelial dysfunction in pulmonary fibrosis (PF) is incompletely understood. Sphingosine-1-phosphate receptor 1 (S1PR1) is a G protein-coupled receptor highly expressed in lung ECs. Its expression is markedly reduced in patients with IPF. Herein, we generated an endothelial-conditional S1pr1 knockout mouse model which exhibited inflammation and fibrosis with or without bleomycin (BLM) challenge. Selective activation of S1PR1 with an S1PR1 agonist, IMMH002, exerted a potent therapeutic effect in mice with bleomycin-induced fibrosis by protecting the integrity of the endothelial barrier. These results suggest that S1PR1 might be a promising drug target for IPF therapy.

15.
Acta Pharmaceutica Sinica B ; (6): 157-173, 2023.
Artigo em Inglês | WPRIM | ID: wpr-971705

RESUMO

Metabolic reprogramming is a hallmark of cancer, including lung cancer. However, the exact underlying mechanism and therapeutic potential are largely unknown. Here we report that protein arginine methyltransferase 6 (PRMT6) is highly expressed in lung cancer and is required for cell metabolism, tumorigenicity, and cisplatin response of lung cancer. PRMT6 regulated the oxidative pentose phosphate pathway (PPP) flux and glycolysis pathway in human lung cancer by increasing the activity of 6-phospho-gluconate dehydrogenase (6PGD) and α-enolase (ENO1). Furthermore, PRMT6 methylated R324 of 6PGD to enhancing its activity; while methylation at R9 and R372 of ENO1 promotes formation of active ENO1 dimers and 2-phosphoglycerate (2-PG) binding to ENO1, respectively. Lastly, targeting PRMT6 blocked the oxidative PPP flux, glycolysis pathway, and tumor growth, as well as enhanced the anti-tumor effects of cisplatin in lung cancer. Together, this study demonstrates that PRMT6 acts as a post-translational modification (PTM) regulator of glucose metabolism, which leads to the pathogenesis of lung cancer. It was proven that the PRMT6-6PGD/ENO1 regulatory axis is an important determinant of carcinogenesis and may become a promising cancer therapeutic strategy.

16.
Acta Pharmaceutica Sinica ; (12): 1059-1068, 2023.
Artigo em Chinês | WPRIM | ID: wpr-978746

RESUMO

1-Deoxy-D-xylulose-5-phosphate synthase (DXS), the first key enzyme in 2-methyl-D-erythritol-4-phosphate (MEP) pathway, catalyzes the condensation of glyceraldehyde-3-phosphate with pyruvate to 1-deoxy-xylose-5-phosphate (DXP). In this study, PgDXS1, PgDXS2, and PgDXS3 genes were cloned from the root of Platycodon grandiflorum (P. grandiflorum). The open reading frame (ORF) of PgDXS1, PgDXS2, and PgDXS3 were 2 160, 2 208, and 2 151 bp in full length, encoding 719, 735, and 716 amino acids, respectively. Homologous alignment results showed a high identity of PgDXSs with DXS in Hevea brasiliensis, Datura stramonium and Stevia rebaudiana. The recombinant expression plasmids of pET-28a-PgDXSs were constructed and transformed into Escherichia coli (E. coli) BL21 (DE3) cells, and the induced proteins were successfully expressed. Subcellular localization results showed that PgDXS1 and PgDXS2 were mainly located in chloroplasts, and PgDXS3 was located in chloroplasts, nucleus and cytoplasm. The expression of three DXS genes in different tissues of two producing areas of P. grandiflorum were assayed via real-time fluorescence quantitative PCR, and the results showed that all of them were highly expressed in leaves of P. grandiflorum from Taihe. Under methyl jasmonate (MeJA) treatment, the expression levels of three PgDXS genes showed a trend of first decreasing and then increasing at different time points (3 - 48 h), and the activity of DXS showed a trend of first increasing and then decreasing in three tissues of P. grandiflorum. This study provides a reference for further elucidating the biological function of PgDXS in terpenoid synthesis pathway in P. grandiflorum.

17.
Chinese Journal of Schistosomiasis Control ; (6): 258-262, 2023.
Artigo em Chinês | WPRIM | ID: wpr-978513

RESUMO

Objective To investigate the prevalence and genotypes of Cryptosporidium spp. and Giardia lamblia in dogs and cats from a pet hospital in Shanghai Municipality. Methods A total of 145 fresh fecal samples were collected from pet dogs and cats in a pet hospital in Shanghai Municipality during the period from November 2021 to June 2022, including 99 dog fecal samples and 46 cat fecal samples. The small subunit ribosomal ribonucleic acid (SSU rRNA) gene of Cryptosporidium and the triose phosphate isomerase (TPI) gene of G. lamblia were amplified using nested PCR assay, and the positive amplification products were sequenced from both directions. The sequence assembly was performed using the software Clustal X 2.1, and sequence alignment was conducted using BLAST. A phylogenetic tree was created with the Neighbor-Joining method using MEGA 11.0 to identify parasite species or genotype. Results The overall prevalence of Cryptosporidium and G. lamblia was 20.00% (29/145) in 145 pet dog and cat fecal samples, with the prevalence of 0.69% (1/145) and 19.31% (28/145) in Cryptosporidium and G. lamblia, respectively. G. lamblia was only detected in dog fecal samples, with prevalence of 18.18% (18/99), while the detection rates of Cryptosporidium and G. lamblia were 2.17% (1/46) and 21.74% (10/46) in cat fecal samples. Nucleotide sequence analysis showed that one Cryptosporidium positive sample was characterized as C. felis, and 28 G. lamblia positive samples were all characterized as Giardia assemblage A, which showed 100% sequence homology with human isolates of Giardia. Phylogenetic analysis revealed that the sequences obtained in this study belonged to the same branch with the reported Giardia assemblage A. Conclusions Cryptosporidium and G. lamblia infection was prevalent in pet dogs and cats from the study pet hospital in Shanghai Municipality, and there is a zoonotic risk for the species and genotype. Intensified surveillance of Cryptosporidium and Giardia infection is recommended in pets and their owners, and improved management of pet keeping is required.

18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 89-99, 2023.
Artigo em Chinês | WPRIM | ID: wpr-978455

RESUMO

ObjectiveTo explore the underlying mechanism of modified Zhenwutang in delaying renal interstitial fibrosis in chronic renal failure (CRF) by observing the effects of modified Zhenwutang on the expression of angiotensin Ⅱ (Ang Ⅱ), angiotensin Ⅱ type 1 receptor (AT1R), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), transforming growth factor-β1 (TGF-β1), type I collagen (COL1A1), and type Ⅲ collagen (COL3A1) in the serum and renal tissues of adenine-induced CRF rats. MethodFifty male SPF-grade SD rats were randomly divided into a normal group (n=10) and an experimental group (n=40) using a random number table. After one week of adaptive feeding, the experimental CRF model was established in rats by administering adenine at 150 mg·kg-1·d-1 orally. Three rats from each group were randomly selected to evaluate the model induction. After successful modeling, rats in the experimental group were randomly divided into a model group, low-, medium, and high-dose modified Zhenwutang groups, and a benazepril hydrochloride group, with six rats in each group. The rats were orally administered the corresponding drugs once daily for four weeks. At the end of the first week, 13th week, and 17th week of the experiment, 24 hour urinary protein quantification (24 h-UTP) was measured. At the end of the 17th week, the rats were euthanized, and blood samples were collected from the abdominal aorta for the measurement of total protein (TP), albumin (ALB), creatinine (Cr), and blood urea nitrogen (BUN) in the serum. Enzyme-linked immunosorbent assay (ELISA) was used to measure the expression levels of serum Ang Ⅱ. Hematoxylin-eosin (HE) staining and Masson's trichrome staining were performed to observe the pathological changes in renal tissues. Immunohistochemistry (IHC) was performed to observe the expression of AT1R, NOX4, TGF-β1, COL1A1, and COL3A1. Real-time fluorescence-based quantitative polymerase chain reaction (Real-time PCR) was used to observe the mRNA expression levels of AT1R, NOX4, and TGF-β1. Western blot was conducted to measure the protein expression levels of AT1R, NOX4, and TGF-β1. Result① Compared with the normal group, the model group showed a significant increase in 24 h-UTP (P<0.01). The levels of Cr and BUN in the model group were significantly higher (P<0.01), while the levels of TP and ALB were significantly lower (P<0.01). The serum Ang Ⅱ level in the model group was significantly elevated (P<0.01). The model group exhibited widening of the renal glomerular mesangial space, necrotic glomeruli, increased interstitial width with extensive inflammatory cell infiltration, brownish precipitates blocking the renal tubular lumens, irregular renal tubules, and significant deposition of collagen fibers in the renal interstitium. Additionally, the collagen fibers around the renal vessels, outside the parietal layer of the renal sacs, glomerular basement membrane, and tubular basement membrane increased significantly. The expression of AT1R and NOX4 in the glomeruli and renal tubules of the model group was significantly enhanced, and TGF-β1 expression also significantly increased in the renal tubules. The expression of COL1A1 and COL3A1 in the renal interstitium significantly increased. The mRNA expression of AT1R and TGF-β1 in the model group significantly increased (P<0.01), while NOX4 mRNA expression significantly decreased (P<0.01). The protein expression of AT1R, NOX4, and TGF-β1 was significantly enhanced (P<0.01). ② Compared with the model group, modified Zhenwutang significantly reduced 24h-UTP (P<0.01), decreased levels of Cr and BUN (P<0.01), increased levels of TP and ALB (P<0.01), reduced serum Ang Ⅱ level (P<0.01), alleviated renal pathological damage, reduced expression of AT1R, NOX4, TGF-β1, COL1A1, and COL3A1 in the glomeruli, renal tubules, and renal interstitium, reduced mRNA expression of AT1R and TGF-β1 (P<0.01), increased NOX4 mRNA expression (P<0.01), and weakened protein expression of AT1R, NOX4, and TGF-β1 (P<0.01). The modified Zhenwutang groups showed a significant dose-effect trend. ConclusionModified Zhenwutang may delay renal interstitial fibrosis in CRF rats by reducing the expression of Ang Ⅱ, AT1R, NOX4, and TGF-β1 in the serum and renal tissues, thereby alleviating renal pathological damage, reducing proteinuria, protecting renal function, and delaying the progression of CRF. The modified Zhenwutang group exhibited a dose-effect trend.

19.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 488-494, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981621

RESUMO

OBJECTIVE@#To study the preparation and properties of the hyaluronic acid (HA)/α-calcium sulfate hemihydrate (α-CSH)/β-tricalcium phosphate (β-TCP) material (hereinafter referred to as composite material).@*METHODS@#Firstly, the α-CSH was prepared from calcium sulfate dihydrate by hydrothermal method, and the β-TCP was prepared by wet reaction of soluble calcium salt and phosphate. Secondly, the α-CSH and β-TCP were mixed in different proportions (10∶0, 9∶1, 8∶2, 7∶3, 5∶5, and 3∶7), and then mixed with HA solutions with concentrations of 0.1%, 0.25%, 0.5%, 1.0%, and 2.0%, respectively, at a liquid-solid ratio of 0.30 and 0.35 respectively to prepare HA/α-CSH/ β-TCP composite material. The α-CSH/β-TCP composite material prepared with α-CSH, β-TCP, and deionized water was used as the control. The composite material was analyzed by scanning electron microscope, X-ray diffraction analysis, initial/final setting time, degradation, compressive strength, dispersion, injectability, and cytotoxicity.@*RESULTS@#The HA/α-CSH/β-TCP composite material was prepared successfully. The composite material has rough surface, densely packed irregular block particles and strip particles, and microporous structures, with the pore size mainly between 5 and 15 μm. When the content of β-TCP increased, the initial/final setting time of composite material increased, the degradation rate decreased, and the compressive strength showed a trend of first increasing and then weakening; there were significant differences between the composite materials with different α-CSH/β-TCP proportion ( P<0.05). Adding HA improved the injectable property of the composite material, and it showed an increasing trend with the increase of concentration ( P<0.05), but it has no obvious effect on the setting time of composite material ( P>0.05). The cytotoxicity level of HA/α-CSH/β-TCP composite material ranged from 0 to 1, without cytotoxicity.@*CONCLUSION@#The HA/α-CSH/β-TCP composite materials have good biocompatibility. Theoretically, it can meet the clinical needs of bone defect repairing, and may be a new artificial bone material with potential clinical application prospect.


Assuntos
Fosfatos de Cálcio , Osso e Ossos , Fosfatos
20.
Acta Pharmaceutica Sinica ; (12): 571-580, 2023.
Artigo em Chinês | WPRIM | ID: wpr-965624

RESUMO

Sphingosine kinase (SphK), sphingosine-1-phosphate (S1P) and S1P receptor (S1PR) are involved in the tumor biological processes such as tumor cell proliferation and migration, and play an important role in the development of cancer. In recent years, researchers have increasingly focused on the interaction between cancer cells and the tumor microenvironment. The tumor microenvironment is genetically stable and can be induced to an antitumor phenotype, which has significant therapeutic advantages. Studies have shown that SphK/S1P/S1PR can regulate multiple aspects of the tumor microenvironment. This review summarizes the effects of SphK and S1P/S1PR signaling on the tumor microenvironment from four perspectives: tumor immune microenvironment, cancer associated fibroblasts, tumor angiogenesis and tumor hypoxic microenvironment, and also outlines potential drug research related to these signal molecules, aiming to elucidate the role of SphK/S1P/S1PR in tumor occurrence and development and provide new ideas for the research of anti-tumor drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA