Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Mem. Inst. Oswaldo Cruz ; 118: e220225, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1529019

RESUMO

BACKGROUND Leishmaniasis, a neglected disease caused by the parasite Leishmania, is treated with drugs associated with high toxicity and limited efficacy, in addition to constant reports of the emergence of resistant parasites. In this context, snake serums emerge as good candidates since they are natural sources with the potential to yield novel drugs. OBJECTIVES We aimed to show the antileishmanial effects of γCdcPLI, a phospholipase A2 inhibitor from Crotalus durissus collilineatus snake serum, against Leishmania (Leishmania) amazonensis. METHODS Promastigotes forms were exposed to γCdcPLI, and we assessed the parasite viability and cell cycle, as well as invasion and proliferation assays. FINDINGS Despite the low cytotoxicity effect on macrophages, our data indicate that γCdcPLI has a direct effect on parasites promoting an arrest in the G1 phase and reduction in the G2/M phase at the highest dose tested. Moreover, this PLA2 inhibitor reduced the parasite infectivity when promastigotes were pre-treated. Also, we demonstrated that the γCdcPLI treatment modulated the host cell environment impairing early and late steps of the parasitism. MAIN CONCLUSIONS γCdcPLI is an interesting tool for the discovery of new essential targets on the parasite, as well as an alternative compound to improve the effectiveness of the leishmaniasis treatment.

2.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484758

RESUMO

Background: Lipid metabolites play an important role in parasite differentiation and virulence. Studies have revealed that Leishmania sp. uses prostaglandins to evade innate barriers, thus enabling the parasites to survive inside immune cells. Despite the role of the enzyme Phospholipase A2 (PLA2) in prostaglandins production, few studies have investigated the role of parasite PLA2 during the interaction between L. (L.) amazonensis and the host (in vitro and in vivo) immune cells. Methods: In the present work, the leishmanicidal effect of PLA2 inhibitors, methyl arachidonyl fluorophosphonate (MAFP), bromoenol lactone (BEL) and aristolochic acid (AA) were investigated in vitro (promastigote and intracellular amastigote forms of L. (L.) amazonensis) and during in vivo infection using BALB/c mice. Results: The aforementioned inhibitors were deleterious to promastigote and amastigote forms of the L. (L.) amazonensis and were non-toxic to peritoneal macrophages from BALB/c mice. L. (L.) amazonensis-infected BALB/c mice treated with the inhibitor BEL presented decreased lesion size and skin parasitism; however, BEL treatment induced hepatotoxicity in BALB/c mice. Conclusions: Results presented herein suggested that PLA2 inhibitors altered L. (L.) amazonensis viability. In spite of liver toxicity, treatment with BEL was the most selective compound in vitro, as well in vivo, resulting in lower skin parasitism in the infected mice. These findings corroborate the role of PLA2 in parasite virulence and maintenance in vertebrate hosts, and suggest that molecules structurally related to BEL should be considered when planning compounds against Leishmania sp.


Assuntos
Animais , Camundongos Endogâmicos BALB C/imunologia , /uso terapêutico , Leishmania , Leishmaniose/tratamento farmacológico , Macrófagos
3.
J. venom. anim. toxins incl. trop. dis ; 24: 21, 2018. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-954855

RESUMO

Lipid metabolites play an important role in parasite differentiation and virulence. Studies have revealed that Leishmania sp. uses prostaglandins to evade innate barriers, thus enabling the parasites to survive inside immune cells. Despite the role of the enzyme Phospholipase A2 (PLA2) in prostaglandins production, few studies have investigated the role of parasite PLA2 during the interaction between L. (L.) amazonensis and the host (in vitro and in vivo) immune cells. Methods: In the present work, the leishmanicidal effect of PLA2 inhibitors, methyl arachidonyl fluorophosphonate (MAFP), bromoenol lactone (BEL) and aristolochic acid (AA) were investigated in vitro (promastigote and intracellular amastigote forms of L. (L.) amazonensis) and during in vivo infection using BALB/c mice. Results: The aforementioned inhibitors were deleterious to promastigote and amastigote forms of the L. (L.) amazonensis and were non-toxic to peritoneal macrophages from BALB/c mice. L. (L.) amazonensis-infected BALB/c mice treated with the inhibitor BEL presented decreased lesion size and skin parasitism; however, BEL treatment induced hepatotoxicity in BALB/c mice. Conclusions: Results presented herein suggested that PLA2 inhibitors altered L. (L.) amazonensis viability. In spite of liver toxicity, treatment with BEL was the most selective compound in vitro, as well in vivo, resulting in lower skin parasitism in the infected mice. These findings corroborate the role of PLA2 in parasite virulence and maintenance in vertebrate hosts, and suggest that molecules structurally related to BEL should be considered when planning compounds against Leishmania sp.(AU)


Assuntos
Animais , Masculino , Ratos , Inibidores de Fosfolipase A2/farmacologia , Leishmania/efeitos dos fármacos , Leishmania/parasitologia , Técnicas In Vitro , Macrófagos Peritoneais/efeitos dos fármacos , Lactonas/antagonistas & inibidores , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA