Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Tipo de estudo
Intervalo de ano
1.
Braz. j. microbiol ; 49(3): 513-521, July-Sept. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951812

RESUMO

Abstract Soil salinity is an important abiotic stress worldwide, and salt-induced oxidative stress can have detrimental effects on the biological nitrogen fixation. We hypothesized that co-inoculation of cowpea plants with Bradyrhizobium and plant growth-promoting bacteria would minimize the deleterious effects of salt stress via the induction of enzymatic and non-enzymatic antioxidative protection. To test our hypothesis, cowpea seeds were inoculated with Bradyrhizobium or co-inoculated with Bradyrhizobium and plant growth-promoting bacteria and then submitted to salt stress. Afterward, the cowpea nodules were collected, and the levels of hydrogen peroxide; lipid peroxidation; total, reduced and oxidized forms of ascorbate and glutathione; and superoxide dismutase, catalase and phenol peroxidase activities were evaluated. The sodium and potassium ion concentrations were measured in shoot samples. Cowpea plants did not present significant differences in sodium and potassium levels when grown under non-saline conditions, but sodium content was strongly increased under salt stress conditions. Under non-saline and salt stress conditions, plants co-inoculated with Bradyrhizobium and Actinomadura or co-inoculated with Bradyrhizobium and Paenibacillus graminis showed lower hydrogen peroxide content in their nodules, whereas lipid peroxidation was increased by 31% in plants that were subjected to salt stress. Furthermore, cowpea nodules co-inoculated with Bradyrhizobium and plant growth-promoting bacteria and exposed to salt stress displayed significant alterations in the total, reduced and oxidized forms of ascorbate and glutathione. Inoculation with Bradyrhizobium and plant growth-promoting bacteria induced increased superoxide dismutase, catalase and phenol peroxidase activities in the nodules of cowpea plants exposed to salt stress. The catalase activity in plants co-inoculated with Bradyrhizobium and Streptomyces was 55% greater than in plants inoculated with Bradyrhizobium alone, and this value was remarkably greater than that in the other treatments. These results reinforce the beneficial effects of plant growth-promoting bacteria on the antioxidant system that detoxifies reactive oxygen species. We concluded that the combination of Bradyrhizobium and plant growth-promoting bacteria induces positive responses for coping with salt-induced oxidative stress in cowpea nodules, mainly in plants co-inoculated with Bradyrhizobium and P. graminis or co-inoculated with Bradyrhizobium and Bacillus.


Assuntos
Cloreto de Sódio/metabolismo , Bradyrhizobium/fisiologia , Inoculantes Agrícolas/fisiologia , Vigna/microbiologia , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Superóxido Dismutase/metabolismo , Peroxidação de Lipídeos , Catalase/metabolismo , Peroxidase/metabolismo , Estresse Oxidativo , Salinidade , Vigna/crescimento & desenvolvimento , Vigna/metabolismo , Glutationa/metabolismo
2.
Braz. j. microbiol ; 40(3): 417-432, Sept. 2009.
Artigo em Inglês | LILACS | ID: lil-522492

RESUMO

Plant-bacteria interactions result from reciprocal recognition between both species. These interactions are responsible for essential biological processes in plant development and health status. Here, we present a review of the methodologies applied to investigate shifts in bacterial communities associated with plants. A description of techniques is made from initial isolations to culture-independent approaches focusing on quantitative Polymerase Chain Reaction in real time (qPCR), Denaturing Gradient Gel Electrophoresis (DGGE), clone library construction and analysis, the application of multivariate analyses to microbial ecology data and the upcoming high throughput methodologies such as microarrays and pyrosequencing. This review supplies information about the development of traditional methods and a general overview about the new insights into bacterial communities associated with plants.


As interações planta-bactéria resultam de um reconhecimento recíproco de ambas espécies. Estas interações são responsáveis por processos biológicos essenciais para o desenvolvimento e a proteção das plantas. Este trabalho revisa as metodologias aplicadas na investigação de alterações nas comunidades bacterianas associadas às plantas. Uma descrição das técnicas é feita, desde o isolamento até a aplicação de técnicas independentes de cultivo, destacando as técnicas de qPCR, Gel de Eletroforese em Gradiente Desnaturante (DGGE), construção e análise de bibliotecas de clones, a aplicação de análise multivariada em dados de ecologia microbiana, e as novas metodologias de alto processamento de amostras como microarranjos e pirosequenciamento. Em resumo, esta revisão fornece informações sobre o desenvolvimento das técnicas tradicionais e uma visão geral sobre as novas tendências dos estudos de comunidades bacterianas associadas às plantas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA